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ABSTRACT 

The aim of this thesis was to generate the knowledge required to represent the possible freedom 

topologies (motions of a mechanism) and the possible constraint topologies (flexural elements 

that guide the mechanism) in a form that designers can use to design parallel flexure systems.  

The framework that links these topologies enables designers to create three-dimensional, multi-

axis flexure systems by using ―Freedom and Constraint Topologies‖ (FACT).  FACT embodies 

every possible design solution for parallel flexure systems.  This information enables designers 

to consider every possible design and then select the design that is best suited for a specific 

application.  FACT was created to improve the design processes for small-scale flexure systems 

and precision machines.  For instance, there is a need to create multi-axis nanopositioners for 

emerging three-dimensional nano-scale research/manufacturing.  Through this work the 

following contributions were made: (1) twenty six unique matching pairs of freedom and 

constraint spaces were identified; (2) it was proven that these spaces embody all possible 

solutions; (3) a design process was created to guide a designer from design requirements, to 

freedom spaces, to constraint spaces, to mechanism designs; (4) a sub-process was created to 

guide designers in the selection of redundant constraints that help satisfy stiffness and symmetry 

requirements without altering the mechanism‘s kinematics; (5) mathematical expressions were 

created to represent the freedom and constraint spaces in a form that enables computers to 

identify and manipulate them.  In this thesis, three case studies are provided to demonstrate the 

FACT design process for mechanisms of varying complexity: (1) a compliant spherical ball joint, 

(2) a compliant probe for a five axis STM, and (3) a compliant rotary flexure are designed.  The 

second case study demonstrates the sub-process for selecting redundant constraints. 
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CHAPTER 1:   

“Introduction” 

 

This chapter provides an overview of the purpose, importance, and impact of this research.  This 

chapter also provides an overview of the current research and background on related work that 

enables the reader to better understand the contributions of the present research in the context of 

past work. 

 

1.1 Research Objectives 

The purpose of this thesis was to generate the knowledge required to represent the possible 

freedom topologies (motions of a mechanism) and the possible constraint topologies (flexural 

elements that guide the mechanism) in a form that designers may use to design parallel flexure 

systems.  The framework that links these topologies enables designers to create three-

dimensional, multi-axis flexure systems by using ―Freedom and Constraint Topologies‖ (FACT).  

FACT embodies every possible design solution for parallel flexure systems.  This information 

enables designers to consider every possible design and then select the design that is best suited 

for a specific application.  FACT was created to improve the design processes for small-scale 

flexure systems and precision machines. 

 

The FACT design process utilizes the principles of constraint-based design [1], and the 

mathematics of screw theory and projective geometry, to enable novice and expert designers to 

create multi-axis parallel flexure systems.  Prior to the creation of FACT, there was no guarantee 

that an expert designer, with years of experience, could generate all possible designs that would 

satisfy a given motion requirement.  FACT embodies all possible design solutions and, therefore, 

any designer, novice or expert, can be confident that all design concepts have been considered.  

The FACT design process is based upon the information that is contained in FACT.  The process 
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guides designers through the decisions that must be made to create flexure system concepts.  

During the process, designers require information to make these decisions.  This information is 

drawn from FACT.  The combination of the FACT process and information provides the 

designer with everything that is needed to (a) design any multi-axis flexure system and (b) select 

redundant constraints that satisfy stiffness and symmetry requirements. 

 

The preceding points are important because flexure systems have a large impact on everyday life 

[2].  Flexure systems (1) possess nanometer repeatability; (2) they are ―friction free‖ for practical 

purposes and thus generate negligible internal heat or wear; (3) they require fewer components, 

and cost less to make, than conventional rigid mechanisms.  The inherent precision of flexure 

systems makes them suitable for use in equipment and instruments that are used to create 

precision components for consumer products.  Examples include disk drives, flat panel TVs, and 

fiber optic devices.  These products require a multi-axis precision machine at some point in their 

development for inspection and/or fabrication purposes.  The preceding examples are within 

areas of high economic or scientific impact.  Any improvements in flexure system design could 

have the potential to increase the quality and decrease the cost of these, and other products.  With 

respect to FACT, the ability to compare and select designs from a complete set of possible 

concepts should lead to better designs. 

 

Flexure systems are also important to metrology for micro- and nano-fabrication, scanning-probe 

microscopy, lens fixtures, and other fields that require precision machinery.  There is a growing 

need to create nanopositioners for emerging, three-dimensional nano-scale research and 

manufacturing applications [3-13].  For instance, compliant nanopositioners could also be used 

to control the parallelism between two plates separated by a distance of only a few nanometers.  

The ability to achieve accurate parallelism between two plates would enable scientists to perform 

experiments that involve the flow of fluids through tiny channels [14] as well as perform 

radiation tests through nano-scale gaps [15]. 
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Designers can use FACT to create flexure systems that consist of an arbitrarily shaped rigid stage 

that is attached to some number of flexural elements that emulate ideal constraints.  Ideal 

constraints restrict motion in one direction only.  These flexural elements are grounded at one 

end and attached to the rigid stage at the other end as shown in Figure 1.1.  FACT enables 

designers to determine any flexure system‘s optimal constraint topology for any given set of 

desired motions such as the rotational and translational degrees of freedom shown in the figure. 

 

Figure 1.2 shows three examples of compliant positioning stages that were designed using 

FACT. 

Rigid Stage

Desired Degrees of Freedom Optimal Constraint Topology

Rigid Stage

Grounded Compliant Constraints

FACT

rotation
translation

Rigid Stage

Desired Degrees of Freedom Optimal Constraint Topology

Rigid Stage

Grounded Compliant Constraints

FACT

rotation
translation

 

Figure 1.1: FACT allows designers to determine a flexure system‘s optimal constraint topology such that 

it may move with desired degrees of freedom (shown in red). 
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Figure 1.2: Flexure systems designed using FACT. 

 

1.2 Elastic Mechanism Design Tools 

FACT is the newest of four methods used to design elastic mechanisms.  The other methods 

include: (1) the pseudo-rigid-body model [16], (2) topological synthesis [17], and (3) constraint-

based design [18].  The final sub-section of this section compares and contrasts these methods 

with FACT.  

 

1.2.1 The Pseudo-Rigid-Body Model 

The psuedo-rigid-body model (PRBM) [16] is a method that is used to predict the large-motion 

kinematic and elastomechanic behavior of compliant mechanisms.  The PRBM creates an 

equivalent rigid-linkage that emulates the behavior of the compliant mechanism under study.  
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Torsional springs are assigned to each joint within the linkage.  Corresponding torsional 

stiffnesses are assigned to each spring using equations that rely on geometric parameters and 

predetermined constants.  Figure 1.3 shows a compliant four bar mechanism and its PRB analog.  

The main advantage of the PRBM is that well-known analysis methods for rigid mechanisms 

may be used to predict the behavior of compliant mechanisms. 
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Figure 1.3: A compliant four bar that is modeled as a rigid linkage using the PRBM.
1
 

 

The vector loop of the four bar shown in Figure 1.3 is given as 

 

 

The torsional spring constant, springK , of each spring shown in Figure 1.3 is given as 

 

 

where E is the modulus, I is the moment of intertia, L is the length of the beam, γ is defined in 

Figure 1.3, and K  is a stiffness coefficient.  Equation (1.1) and Equation (1.2) are used with 

                                                 
1
 Vectors are expressed as letters with bars above them in the figures of this thesis. 

kjiRRRR DACDBCAB
ˆ0ˆ0ˆ0 
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the principle of virtual work to link the applied loading of the compliant mechanism and its 

displacements as 

 

 

The PRBM has been used to model and analyze a wide variety of commercial compliant 

mechanisms such as centrifugal clutches, bicycle derailleurs, thermal actuators, bistable 

mechanisms, and grippers [19,20]. 

 

1.2.2 Topological Synthesis 

Topological synthesis [21-23] constructs the topology of compliant mechanisms by satisfying 

input and output displacement/force specifications using systems of linear beam elements.  A 

rectangular design domain is divided into a number of nodes and connecting beam elements are 

modeled as an initial concept as shown in Figure 1.4.  Through a sequence of iterations, a 

computer generates multiple design concepts by (a) eliminating beam elements from the design 

domain and then (b) testing each concept using FEA to identify an optimal design that will best 

meet the design requirements.  Subsequent processes vary the thicknesses, lengths, and material 

properties of the beams within the selected concept to optimize the compliant mechanism‘s 

performance.  The mechanism is designed to satisfy its elastic requirements without buckling 

under external loads.  The optimization process considers criteria such as 

mechanical/geometrical advantage, volume or weight of the material used, work done by 

external forces, stress and strain levels, fatigue strength, ease of manufacturing, and ergonomics 

and aesthetics. 

21 xdFdTxdF exertedspringspringapplied


   . (1.3) 
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Figure 1.4: Topological synthesis eliminates beam elements from a design domain until a concept is 

generated that most optimally satisfies the design requirements (displacements shown in red). 

 

Topological synthesis utilizes principles of energy to converge to an optimal design.  Energy 

losses and inertial force effects are assumed to be negligible in the compliant mechanism such 

that the input energy, inputinput UF  , is equal to the output energy, outputoutput UF  , plus the stored 

strain energy in the mechanism.  The mutual potential, MPE, is maximized to attain the 

flexibility requirements and is given by 

 

 

where K is the system‘s stiffness matrix. 

Topological synthesis has been used to design compliant grippers, mechanical frequency 

doublers, as well as micro- and nano-devices. 

 

 

 

 

 

 

output

T

inputKUUMPE  , (1.4) 
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1.2.3 Constraint-based Design 

Constraint-based design [18] is based upon the axiom that the orientation and location of a 

mechanism‘s constraints determine the motion of the mechanism.  Constraint-based design 

requires a human‘s abilities to recognize patterns, visualize motions, and synthesize compliant 

modules.  The principles of constraint-based design are not easily programmable and no 

computer-aided tool exists for its application. 

 

An experienced constraint-based designer is familiar with modules that move with easily 

visualized motions such as the mechanisms shown in Figure 1.5.  The motions of the first 

module on the left side of this figure are easily visualized using instant centers.  An instant center 

is a point that exists at the junction of lines of action from compliant constraints that are attached 

to the rigid body.  The concept of an instant center is a key principle in constraint-based design.  

The motions of the second module shown on the right side of the figure are also easily 

visualized.  This mechanism is well known to constraint-based designers as a compliant four bar, 

or parallel guiding mechanism. 
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Figure 1.5: Two compliant modules with motions (red) that are easily visualized. 

 

These modules may be combined to form more complicated compliant mechanisms that are 

capable of exhibiting complex motions such as those that could be obtained by the mechanism 

shown in Figure 1.6 [24]. 
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Figure 1.6: A compliant mechanism with motions (red) that are more difficult to visualize. 

 

The relative lengths of the constraints and the placement of the instant centers, rigid bodies, and 

grounds are all determined by the designer to achieve the desired mechanism motions and 

transmission ratios. 

Constraint-based design also includes rules involving modules that are in series or in parallel.  

The motions of a mechanism that consists of modules combined in series are determined by 

adding the motions of each individual module.  The effective constraint of a mechanism that 

consists of modules combined in parallel is determined by adding the constraints of each 

individual module.  Determining the kinematics and elastomechanics of these combined modules 

is a difficult task even for an experienced constraint-based designer. 
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1.2.4 Comparison of FACT with Conventional Design Tools 

This section compares the FACT design method with the methods in the previous sub-sections. 

 

Comparing the pseudo-rigid-body model with the FACT design method is difficult because their 

objectives are different.  The pseudo-rigid-body model, although a powerful modeling tool, is not 

a synthesis tool.  The FACT design method, on the other hand, is intended to generate flexure 

system concepts. 

 

Topological synthesis is a concept synthesis tool.  Topological synthesis requires little or no 

input from the designer during its design process.  On occasion, therefore, it generates designs 

that may be difficult to manufacture and integrate into machines.  Mechanisms created using 

topological synthesis are generally planar and are not capable of multi-axis motions.  FACT, 

however, is capable of designing three-dimensional, multi-axis mechanisms that are capable of 

moving with complex motions such as screws that cause the mechanism‘s stage to translate 

along any axis through three-space while simultaneously rotating the stage with a desired pitch.  

FACT also enables designers to consider all possible solutions. 

 

Constraint-based design is a knowledge-based design process that requires years of 

apprenticeship to master.  The FACT design process, however, requires less design experience.  

A designer must only be capable of selecting lines from within spaces that are provided.  

Although the designer is given the liberty of making important design decisions, he/she is 

instructed during the process and is guaranteed a functioning design.  Although the FACT design 

method is based on the principles of constraint-based design, FACT is much more quantitative in 

nature than constraint-based design and is, therefore, more systematic and general. 

 

FACT enables the use of both the designer‘s intuition and the guidance of a systematic method to 

create three-dimensional elastic mechanisms that are capable of moving with complex motions.  

It utilizes the semi-qualitative principles of constraint-based design and the quantitative 
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principles of screw theory to visually represent all possible constraint solutions for every 

possible parallel elastic mechanism using fully parameterized spaces.  These spaces provide 

designers with an immediate visual understanding of the kinematics of complicated elastic 

mechanisms.  FACT also guides the designer in selecting possible non-redundant constraints 

from within these constraint spaces to ensure correct kinematics.  Furthermore, FACT guides the 

designer in intelligently selecting redundant constraints to control the stiffness, stability, 

symmetry and load capacity of mechanisms.  The ability to control these parameters is a novel 

advance in the design of elastic mechanisms.  Prior to FACT, no formal method existed that was 

capable of controlling useful system redundancy. 

 

1.3 Thesis Overview 

Chapter 2, Chapter 3, and Chapter 4 of this thesis review principles of constraint-based 

design, screw theory, and projective geometry respectively.  These principles are reviewed in the 

context of FACT.  Chapter 5 introduces the concepts of freedom and constraint space as spaces 

that fully describe the motions and constraints of any system.  Chapter 6 describes three 

geometric entities that appear as freedom and constraint spaces within FACT.  Chapter 7 and 

Chapter 8 identify and describe every possible freedom and constraint space for every system 

that exists in three-dimensions.  Chapter 9 discusses the findings from the two previous chapters 

and notes a symmetry within the spaces.  Chapter 10 introduces the FACT design process and 

provides three case studies for demonstrating its utility.  Chapter 11 summaries the 

accomplishments of this research and concludes by listing ideas for potential future work. 
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CHAPTER 2:   

“Constraint-based Design” 

This chapter reviews key principles of constraint-based design.  FACT is based upon the 

principles of constraint-based design.  The last section of this chapter presents new insights into 

constraint-based design that inspired the creation of FACT. 

 

2.1 Maxwell’s Contributions 

James Clerk Maxwell‘s observations in the field of ―Exact Constraint‖ [25] were important to the 

development of constraint-based design.  He formulated a basic mathematical relationship 

between constraints and degrees of freedom
2
.  A constraint restricts motion in a particular 

direction.  Every non-redundant constraint that is added to a body removes a single degree of 

freedom from that body.  The equation that expresses this observation is written as 

 

   

where N is the number of non-redundant constraints and R is the number of independent degrees 

of freedom.  Free standing objects in three-space have 6 degrees of freedom—three orthogonal 

translations and three orthogonal rotations.  These degrees of freedom are shown in Figure 2.1. 

                                                 
2
 Although Maxwell is largely responsible for popularizing the concept of Equation (2.1), it‘s possible that he 

wasn‘t its originator [26] 

RN 6  (2.1) 
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Figure 2.1: Every free standing object has 6 independent degrees of freedom—three orthogonal 

translations and three orthogonal rotations 

 

A body is exactly constrained if it has 6 non-redundant constraints.  Such a body will be unable 

to move since it has no degrees of freedom. 

 

Figure 2.2 illustrates the traditional way of interpreting Equation (2.1).  In this figure a rigid 

block is constrained by two parallel compliant beams.  According to Equation (2.1), the block 

loses two of its 6 degrees of freedom.  The four remaining degrees of freedom may be visualized 

and confirmed by logic.  They include two translations along the y- and z-axes and two rotations 

along the x- and y-axes as shown in Figure 2.2. 

z

x

y

z

x

y

z

x

y

 

Figure 2.2: A block with two constraints and four degrees of freedom. 
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This traditional interpretation of Equation (2.1), however, does not provide a comprehensive 

understanding of the system‘s kinematics.  A more complete way of representing a system‘s 

kinematics will be shown later. 

 

2.2 Blanding’s Contributions 

Douglass L. Blanding‘s research is also important in determining the relationship between 

constraints and degrees of freedom [27].  He modeled slender, compliant beams as ideal 

constraints.  An ideal constraint is approximated as having infinite compliance perpendicular to 

the constraint‘s line of action and infinite stiffness along the constraint‘s line of action as shown 

in Figure 2.3a.  This model, although simplistic, is adequately descriptive for finding the 

directions of greatest compliance for a rigid stage constrained by slender, compliant beams for 

small motions.  In this thesis a constraint line is represented by a blue line that travels through 

the center of a physical constraint along its line of action. 

Ideal Constraint:
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Degree of Freedom:

Freedom Line

∞

Constraint Line

Stiff∞
(a)

(b)
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∞
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Ideal Constraint:
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∞

Constraint Line
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Figure 2.3: Modeling constraints and degrees of freedom as lines in three-space. 

 

Blanding also observed that an object‘s degrees of freedom could be represented by rotations 

about lines called freedom lines shown in Figure 2.3b.  In this thesis all freedom lines will be 

shown in red.  He noted that pure translational degrees of freedom could be modeled as freedom 
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lines that are perpendicular to the direction of translation that is located infinitely far from the 

object that is translating.  This concept is illustrated in Figure 2.4. 

Translation Rotation

∞

Translation Rotation

∞

 

Figure 2.4: A pure rotational freedom line infinitely far from an object will emulate a pure translational 

degree of freedom  

 

Blanding‘s Rule of Complementary Patterns defines the relationship between constraints and 

degrees of freedom.  The spaces used in the FACT design process were largely determined using 

this rule.  The rule of Complementary Patterns states the following:  

Every freedom line intersects every constraint line. 

Whether the points of intersection are the same or not does not matter as long as each freedom 

line intersects each constraint line. 

 

Blanding also asserted that parallel lines intersect each other at a single point at infinity.  Figure 

2.5 demonstrates this principle of projective geometry.  Imagine first, two lines intersecting at a 

point in finite space.  This point will gradually move toward infinity as the lines approach a 

parallel state. 
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Figure 2.5: As intersecting lines become more parallel, the point of intersection approaches infinity. 

 

Figure 2.6 shows an example of a block constrained by five non-redundant constraints.  

According to Equation (2.1), this block should have one remaining degree of freedom.  

Blanding‘s Rule of Complementary Patterns finds this pure rotational freedom line to be the red 

line shown in Figure 2.6.  This line is the only line that intersects every blue constraint line at 

least once.  This red line intersects two of the blue lines at a single point on the edge of the block, 

and intersects the other three blue lines at a point infinitely far from the block since it is parallel 

to them. 

 

As the relationship between constraints and degrees of freedom is independent of the stage‘s 

shape, size, and location, the block is not important to a basic understanding of the kinematics of 

the system and may be removed from the picture.  Only constraint lines (blue) and freedom lines 

(red) remain as shown in Figure 2.6. 
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Figure 2.6: Constraint and freedom lines for a block constrained with five non-redundant constraints 

 

Blanding also made two important assertions about freedom lines: 

(1) If two intersecting freedom lines exist for a given constraint layout, an entire disk (i.e. pencil) 

of infinite freedom lines will also exist.  This disk will lie in the same plane as the two 

intersecting freedom lines and will contain, as its center point, the intersection point of these two 

lines. 

(2) If two parallel freedom lines exist for a given constraint layout, a plane containing infinite 

parallel freedom lines will also exist.  The two parallel freedom lines will lie on the same plane 

as the plane containing the infinite parallel freedom lines and will be parallel to those lines. 

Figure 2.7 depicts these assertions.  These assertions will be mathematically verified later in this 

thesis along with Blanding‘s Rule of Complementary Patterns.  These concepts help the designer 

find the complete set of motions for a given system. 
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Figure 2.7: (1) If two intersecting freedom lines exist, a disk of infinite freedom lines will also exist.     

(2) If two parallel freedom lines exist, a plane of infinite parallel freedom lines will also exist.  

 

2.3 New Insights in Constraint-based Design 

In many systems an infinite number of freedom lines satisfy the Rule of Complementary 

Patterns.  This section discusses such systems and introduces the notion that spaces exist that 

contain every freedom line for a given system.  This notion enables one to visually represent the 

complete kinematics for any mechanism and is integral to the FACT design method. 

 

Consider the rigid block in Figure 2.8 that is constrained by three non-redundant constraints.  

The block is removed from the picture since only constraint lines are necessary to find freedom 

lines.  Two of the constraint lines lie on the horizontal plane depicted in Figure 2.8.  They 

intersect at a point that lies on the dashed intersection line between the horizontal and vertical 

plane.  The third constraint line lies on the vertical plane. 
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Figure 2.8: A flexure system with three non-redundant constraints shown with, and without, its rigid 

stage. 

 

The Rule of Complementary Patterns will now be used to find all of the freedom lines.  The first 

picture in Figure 2.9 shows a disk containing an infinite number of red lines that lie on the 

horizontal plane.  The center point of this disk is the intersection of the vertical constraint line 

and the horizontal plane.  Every line inside this disk intersects the constraint line on the vertical 

plane, but they all also intersect the other two constraint lines that share the same plane.  Since 

every red line inside this disk intersects all three blue constraint lines, Blanding‘s Rule of 

Complementary Patterns suggests that they are all freedom lines of the system.  The second 

picture in Figure 2.9 shows another disk of red lines that lie on the vertical plane with a center 

point coincident with the intersection point of the two constraint lines on the horizontal plane.  

All of these red lines also intersect all three constraint lines and are, therefore, also freedom lines 

of the system.  No other lines outside of these two red disks will intersect all three of the 

constraint lines. 
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Figure 2.9: Every line that intersects all three constraint lines may be expressed as two disks of freedom 

lines.  One disk lies on the horizontal plane and the other disk lies on the vertical plane. 

 

The block is shown again in Figure 2.10 with the two disks of pure rotational freedom lines.  

These disks are visual representations of the pure rotational kinematics of the constrained block.  

In other words, the block‘s permissible motions will be rotations about any of the red lines 

shown in Figure 2.10. 

 

Figure 2.10: Kinematics of the block constrained by three non-redundant constraints that are expressed as 

pure rotational freedom lines (red). 
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It may seem contradictory to consider an infinite number of freedom lines when only three 

degrees of freedom are expected.  Later it will be shown that the two disks of infinite freedom 

lines contain three independent freedom lines, a finding that is consistent with Equation (2.1). 

 

The concept of visually representing an infinite number of allowable motions of a flexure system 

using finite geometric shapes and spaces that contain an infinite number of freedom lines is a key 

concept to the FACT design method.  This concept will be developed further in later chapters.    
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CHAPTER 3:   

“Screw Theory” 

This chapter reviews the basic principles of screw theory [28-30] to generate a mathematical 

relationship between degrees of freedom and constraints.  This relationship lies at the heart of the 

FACT design method. 

 

3.1 Twists as Degrees of Freedom 

This section presents a model for mathematically describing the degrees of freedom of flexure 

systems.  In the context of kinematics, Chasles Theorem [31] states that: 

“Any motion of a rigid body in space may be described as a screw motion.” 

All degrees of freedom will, therefore, be modeled as screws or twists in space.  A twist is a 16  

velocity vector that is represented as a single line in three-space.  A twist may be described using 

three parameters: (1) a 13  location vector, c


, that points from the origin of an arbitrarily 

defined coordinate system to any point along the twist‘s line, (2) a 13  orientation vector, w


, 

that points in the direction of the twist‘s line and represents the twist‘s rotational velocity, and 

(3) a scalar pitch value, p, where pitch is defined as the twist‘s translation per rotation along its 

line.  Figure 3.1 depicts a standard twist using these parameters. 
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The 16  twist vector, T


, is given in Equation (3.1) in terms of the parameters defined 

previously.  This twist vector is defined as 

 

 

 

 

 

where v


 is a 13  vector that represents the twist‘s translational velocity and w


 is a 13  vector 

that represents the twist‘s rotational velocity.  If the twist‘s pitch equals zero, the twist will be a 

rotational freedom line.  If the pitch is infinite, the twist will be a pure translation along the 

twist‘s line of action.  If the pitch is a non-zero finite value, it represents a motion that translates 

along the line of the twist while simultaneously rotating about the same line in a coupled fashion.  

For the remainder of this paper, twists with zero pitch values will be called pure rotations or 

freedom lines and they will be depicted as red lines.  Twists with infinite pitch values will be 

called pure translations and they will be depicted as thick black lines.  Twists with non-zero 

finite pitch values will be called screws and they will be depicted as green lines.  This convention 

is shown in Table 3.1. 
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Figure 3.3: A twist (green line) with a location vector ( c


), an orientation vector ( w


), and a pitch of p 
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Table 3.1: Twist names and line colors for different categories of pitch 

Pitch Value Name of Twist Color of Twist Line 

0p  Pure Rotation or Freedom Line  

p  Pure Translation  

 0p  Screw  

 

Suppose one wished to find the twist vector, T


, for a given screw with a pitch value of 2m/rad 

and a rotational velocity vector, w


, with a magnitude of 2 rad/s as shown in Figure 3.2.  The 

screw‘s line of action (green) never intersects the x-y plane but intersects the z-axis at a distance 

of 1m above the origin.  The projected line of the screw onto the x-y plane is 45 degrees from the 

x-axis as shown. 
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Figure 3.2: A twist with a pitch of 2m/rad and a rotational velocity vector, w


, with a magnitude of 

2 rad/s 
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In order to find the twist vector, T


, a location vector, c


, must be identified.  The most 

convenient location vector to choose along the twist line is  Tc 100


.  A rotational velocity 

vector of  Tw 011


 will point in the correct direction and will have a magnitude equal to 

2 rad/s.  The pitch value, p, has been given a value of 2m/rad.  At this point, the three 

important parameters that define a twist: c


, w


, and p have been found.  If these parameters are 

plugged into Equation (3.1) the twist vector is found to be  TT 031011


. 

 

3.1.1 Decomposing Twists 

This section explains how twists may be decomposed.  The ability to decompose a twist is 

important for visualizing where its line of action lies in three-space. 

 

Suppose one is given a twist vector, T


, and wishes to decompose it to find its c


, w


, and p 

parameters.  The rotational velocity vector, w


, consists of the first three components of the twist 

vector.  The translational velocity vector, v


, consists of the last three components of the twist 

vector.  Finding the pitch value using these two vectors requires a closer look at the definition of 

a twist.  Figure 3.3 is a picture of a twist line (green) showing both the vectors w


 and v


. 
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Figure 3.3: A graphical representation of Equation (3.1). 
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Note from Figure 3.3 that  

 

 

 

If the dot product of the two velocity vectors, w


 and v


, are taken, it can be shown that 

 

 

 

where θ is the angle between the two velocity vectors as shown in Figure 3.3.  If Equation (3.2) 

is plugged into Equation (3.3) and p is solved for, it can be shown that 

 

 

 

Now that the rotational velocity vector, w


, and the pitch value, p, may be found given a twist 

vector, finding an acceptable location vector, c


, is the last step in successfully decomposing a 

twist.  From Equation (3.1) it can be shown that 

 

 

If the cross product of the c


 and w


 vectors are taken, it can be shown that 

 

 

 

 

 

Now if the resulting vector is added to the vector wp


 in accordance with Equation (3.5), it can 

be shown that the equations for each component of the translational velocity vector, v


, is: 
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From these equations the location matrix may be defined as the matrix that relates the w


 and v


 

vectors as 

 

 

 

 

The location vector, c


, of a twist may be found using this matrix.  The following example 

demonstrates how this is done. 

 

Suppose one wishes to decompose the twist that was constructed in the previous example: 

 TT 031011


.  Equation (3.1) suggests that  Tw 011


 and  Tv 031


.  The 

twist‘s pitch can be solved for by plugging these two vectors into Equation (3.4).  This pitch, p, 

is confirmed to equal 2m/rad.  For this example, the location matrix equation is found using 

Equation (3.8) and is given as 

 

 

 

 

From Equation (3.9), it ban be determined that any location vector, c


, will satisfy the twist as 

long as its components are bound by the following conditions: 

 

 

 

The orientation vector chosen from the previous example was  Tc 100


, which satisfies 

Equation (3.10). 

xyzzyx pwwcwcv   
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(3.7) 
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3.2 Wrenches as Constraints 

This section presents a model for mathematically describing the constraints of flexure systems.  

Whereas degrees of freedom are modeled as twists in screw theory, constraints are modeled as 

wrenches.  A wrench is a 16  force vector that may be represented as a single line in three-

space.  It may be described using three parameters: (1) a 13  location vector, r


, that points 

from the origin of an arbitrarily defined coordinate system to any point along the wrench‘s line 

of action, (2) a 13  orientation vector, f


, that points along wrench‘s line of action and 

represents the wrench‘s translational or axial force, and (3) a scalar constant, q, that is analogous 

to a twist‘s pitch in that it couples the wrench‘s force with the torque.  Figure 3.4 depicts a 

standard wrench using these parameters. 

 

The 16  wrench vector, W


, is given in Equation (3.11) in terms of the parameters defined 

above. 

r

f
q 

x

y

z rr

f
q 

x

y

z

 

Figure 3.4: A wrench (blue line) with a location vector ( r


), an orientation vector ( f


), and a scalar 

torque value constant of q 
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where 


 is a 13  vector that represents the wrench‘s rotational force or torque and f


 is a 13  

vector that represents the wrench‘s translational or axial force.  For constraints like the ones used 

to design flexure systems, q will always equal zero.  This observation is true since flexure 

constraints are modeled as ideal constraints that are only capable of imposing axial forces on the 

objects they‘re constraining.  Every other rotational or translational direction is infinitely 

compliant by definition of an ideal constraint.  Since the ratio of axial stiffness to lateral stiffness 

is much greater than 1 for long, slender, compliant beams, one can reasonably model them as 

ideal constraints.  Since the q values of ideal constraints always equal zero, wrenches will always 

be represented with a single color, blue. 

  

Wrenches are analogous to twists.  The orientation vectors, f


 and w


, are analogues; the 

location vectors, r


 and c


, are analogous; the vectors 


 and v


 are analogous; and the scalar 

values, q and p, are analogous.  Any equation that was presented in the previous section on twists 

will, therefore, apply for wrenches as long as the appropriate parameters are replaced— f


 for w


, 

r


 for c


, 


 for v


, and q for p.  Once one substitutes these values properly, the same equations 

and principles that applied for twists apply for creating and decomposing wrenches.  The analogy 

breaks down only when one considers that f


 is a translational vector where w


 is a rotational 

vector and 


 is a rotational vector where v


 is a translational vector.  The significance of these 

observations will be addressed shortly. 
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3.3 Twist and Wrench Relationship 

This section presents the relationship between twists and wrenches.  This relationship (a) will 

provide the mathematical relationship between degrees of freedom and constraints and (b) is 

needed to complete the FACT design method.  

 

A twist is said to be complementary, or reciprocal, to a wrench if its dot product with the wrench 

equals zero [32] as shown in the following equation: 

 

 

 

where the v


 and w


 vectors have switched places within the twist vector.  This switch is made so 

that (a) the translational vectors f


 and v


 and (b) the rotational vectors 


 and w


 will be 

multiplied with each other when the wrench is dotted with the twist.  These products have units 

of power and may be added together.  When the dot product of a wrench with a twist equals zero, 

the motion associated with this twist produces no power.  In other words, this motion doesn‘t 

enable the constraint to offer any resistance in directions perpendicular to its axis.  In reality, a 

motion like this will be in a direction of least stiffness as opposed to the idealized condition of 

zero stiffness. 

 

Appendix A shows how Equation (3.12) simplifies to the following equation: 

 

 

where p is the pitch of the twist, d is the shortest distance between the twist (DOF) and wrench 

(constraint) lines, and θ is the skew angle between the twist and wrench lines as shown in Figure 

3.5. 
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Equation (3.13) is a general mathematical relationship between constraints and degrees of 

freedom.  This equation mathematically proves Blanding‘s Rule of Complementary Patterns
3
.  

Notice that when d is zero, the twist intersects the wrench.  According to Blanding, if a line 

intersects a constraint, it is a pure rotational freedom line.  Equation (3.13) confirms that when d 

is zero, the pitch of the twist is zero and the twist will be a pure rotational freedom line as shown 

in Figure 3.6. 

 

                                                 
3
 My thanks to Haijun Su for bringing this observation to the author‘s attention 

θ
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Constraint
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Figure 3.5: The parameters that are used to quantitatively define the relationship between a twist (green) 

and a wrench (blue) are p, d, and θ. 

d = 0

p = 0

θ

d = 0

p = 0

θ

 

Figure 3.6: A twist will be a pure rotational freedom line if d=0 
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Blanding‘s Rule of Complementary Patterns states that if a line is parallel to a constraint, it is 

also a pure rotational freedom line since it intersects the constraint at infinity.  When θ is zero 

such that the twist is parallel with the wrench, Equation (3.13) dictates that the pitch of the twist 

is zero.  This confirms that the line is a pure rotational freedom line as shown in Figure 3.7. 

 

Although Blanding‘s Rule of Complementary Patterns was presented in Chapter 2 as the 

relationship between degrees of freedom and constraints, Equation (3.13) demonstrates that it is 

incomplete and only contains a part of the story.  Blanding‘s Rule says nothing about a 

constraint‘s relationship with screws or pure translations.  If, for instance, d is non-zero and the 

skew angle, θ, between the twist and wrench is 90 degrees, Equation (3.13) predicts that the 

pitch of the twist would approach infinity, which makes it a pure translation as Figure 3.8 

shows.  If d is non-zero and the skew angle is between zero and 90 degrees or between zero and -

90 degrees, the twist will be a screw with a finite pitch whose value is determined by Equation 

(3.13).  This was shown in Figure 3.5. 

θ = 0

p = 0

d

θ = 0

p = 0

θ = 0

p = 0

d

 

Figure 3.7: A twist will be a pure rotational freedom line if θ=0 degrees 
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Suppose now that d is zero such that the twist intersects the wrench and that θ is 90 degrees such 

that the twist is perpendicular to the wrench.  Equation (3.13) finds a pitch that equals zero 

multiplied by infinity under these conditions.  Interpreting this result is difficult, so Equation 

(A.4) in Appendix A should be referred to for help.  When a twist intersects a wrench at a right 

angle, this equation simplifies to the twist‘s pitch multiplied by zero equals zero, which will 

always be a true statement for any pitch value.  For this special case, therefore, the twist could be 

a pure rotation, a pure translation, or any screw with any pitch value as Figure 3.9 shows. 

 

θ = 90

p = ∞

d = 0

θ = 90

p = ∞

d = 0d = 0

 

Figure 3.8: A twist will be a pure translation if θ=90 degrees and d is a non-zero distance 

θ = 90

d = 0

p = anything

θ = 90

d = 0

p = anything

 

Figure 3.9: If θ=90 degrees and d=0, a twist may be a pure rotation with a zero pitch value (red), a pure 

translation with an infinite pitch value (black), or a screw with any finite non-zero pitch value (green)   
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3.4 Twists Complement Multiple Wrenches 

In this section two approaches will be explored for finding a system‘s degrees of freedom given 

its constraint topology consisting of multiple constraints.  One approach utilizes Equation (3.13) 

as a means of rapidly and visually finding plausible twists, and the other approach is completely 

mathematical and thus more thorough. 

 

3.4.1 Visual Approach for Locating Twists 

Equation (3.13) may be used to find twists that complement multiple constraints with an 

approach that requires visualizing twists in three-space.  To do this, it is important to realize that 

every twist has one and only one pitch value.  In other words, a twist does not exist if it has 

multiple pitch values.  The second statement may seem more abstract than the first, but it is a 

better way of thinking about it for the visual approach of finding plausible twists.  An example 

will help clarify this point. 

 

Suppose one wished to find all the twists that complement a constraint topology that consists of 

two parallel constraints.  One must try to visualize the locations of all possible twist lines for this 

system.  Suppose one chose, first, to visualize a twist line that intersects the plane of the two 

parallel constraints and is orthogonal to a line on that plane that is also orthogonal to the two 

constraints as shown in Figure 3.10.  If this is an allowable twist, it must satisfy Equation (3.13) 

for both constraints.  Each constraint line will have the same skew angle, θ, with this twist line.  

The shortest distance lines, however, will be different, i.e., d1 is not equal to d2.  Equation 

(3.13) would, therefore, assign two different pitch values to this potential twist which disqualifies 

it as an allowable motion.  Since this twist cannot exist with two different pitch values, it fails the 

visual test and other locations for twists must be found that do pass the test. 
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Suppose now one tries a twist line on a plane above the plane of the two parallel constraints 

shown in Figure 3.11.  Both constraint lines share the same skew angle, θ, with the twist line.  

Both constraint lines also share the same shortest distance, d, with the twist line.  Both 

constraints will, therefore, also predict the same pitch value, p, for the twist.  Since this twist line 

has a single pitch value according to both constraints, it is a degree of freedom for the system.  

This should be the case for any twist on any plane parallel or coincident to the plane of the 

constraints.  If the planes are coincident, the twists will always be pure rotations with zero pitch 

values according to Blanding‘s Rule of Complementary Patterns and according to Equation 

(3.13).  Also if the skew angle, θ, is zero for any twist on any of these planes, the twist will be a 

pure rotation. 

θ

d2

d1

1 2 p1 = d1*tan θ

p2 = d2*tan θ

p1 = p2

θ

d2

d1

1 2 p1 = d1*tan θ

p2 = d2*tan θ

p1 = p2
 

Figure 3.10: A twist (green) that fails the visual test because it possesses multiple pitch values  

θ

d

1 2

p = d*tan θ

θ

d

1 2

p = d*tan θ

 

Figure 3.11: A twist (green) that passes the visual test because it has a single pitch value 
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In order to find every allowable twist, more twist locations must be considered.  Suppose a twist 

line lies on a plane that is orthogonal to the two parallel constraints shown in Figure 3.12.  

Although the two shortest distances from the twist to each constraint, d1 and d2, will be 

different, the skew angle between the twist and each constraint will be 90 degrees.  According to 

Equation (3.13), the predicted value of the twist‘s pitch is infinite.  Therefore, any twist on any 

plane that is orthogonal to both parallel constraints will be an allowable twist that is a pure 

translation. 

 

One could continue to check for more allowable twists at an infinite number of locations, but by 

performing just a few more tests at several other locations, one quickly gains confidence that all 

the allowable twists have been found for this constraint system.  This hypothesis that all the 

twists have been found, however, cannot conclusively be proven using the visual approach, but 

can be mathematically confirmed using the more thorough approach that will be presented in the 

next section. 
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Figure 3.12: A twist (black) that passes the visual test because it has a single pitch value of infinity 
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3.4.2 Mathematical Approach for Locating Twists 

In a way, the mathematical approach for locating twists has already been presented, but this 

approach was not presented as a method for finding twists for a multi-constraint system.  Every 

twist that complements a system with a single constraint is essentially the null space of a matrix 

that contains this constraint‘s wrench vector.  This statement is simply another way of re-

describing Equation (3.12).  The allowable twists of a multi-constraint system where q=0 may 

be found by solving for the null space of a matrix that contains the system‘s wrenches as shown 

in the equation below: 

 

 

 

 

 

for n constraints.  This approach will now be applied to the previous example of two parallel 

constraints. 

 

One first converts the parallel constraint lines into a mathematical form by placing them in a 

coordinate system.  Suppose the first constraint lies on the x-axis and the second parallel 

constraint intersects the y-axis an arbitrary distance, d, away from the origin as shown in Figure 

3.13.  The first constraint‘s location vector is given by  Tr 0001 


, and its orientation vector 

is given by  Tf 0011 


.  The second constraint‘s location vector is given by 

 Tdr 002 


, and its orientation vector is given by  Tf 0012 

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From these vectors, two wrenches may be constructed using Equation (3.11) and placed within a 

62  wrench matrix where each row corresponds to each constraint.  The null space of this 

matrix may be found using 

 

 

 

The null space of this particular wrench matrix is a linear combination of four independent 16  

vectors.  To describe these vectors as conventional twists, their v


 and w


 vectors are switched so 

that they are expressed in the form shown in Equation (3.1).  The result is shown below: 

 

 

 

 

 

 

 

where A, B, C, and D may be any real numbers.  The 16  twist vector at the far right of 

Equation (3.16) is the complete mathematical representation of every possible twist for the 

d

f1

f2

x

y

z
r2

d

f1

f2

x

y

z
r2

 

Figure 3.13: Two parallel constraint lines with the parameters necessary to describe them as wrenches 
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system of two parallel constraints.  This resultant twist‘s rotational and translational velocity 

vectors, w


 and v


, are the following: 

 

 

 

 

Note that regardless of the C and D values in the v


 vector that the directional vector, w


, will 

always cause the twist‘s line to lie on a plane that is parallel or coincident with the x-y plane on 

which the two parallel constraints lie since its z-component is always zero.  This observation is 

true as long as both A and B are not simultaneously zero.  Note also, however, that if the A and B 

constants are simultaneously zero that the twist vector becomes a pure translation that points in 

the direction of v


 (If this is not clear now, Chapter 4 will address this concept in greater depth). 

This pure translational twist will always lie on the y-z plane since the v


 vector‘s x-component is 

always zero.  This plane will always be orthogonal to the two constraints.  Therefore, as long as 

the resultant twist is not a zero vector (i.e. all four constants A, B, C, and D simultaneously equal 

zero) every allowable twist that complements the two parallel constraints will lie on a plane that 

is parallel or coincident with the plane of the constraints, or they will be pure translations and 

will lie on a plane that is orthogonal to both constraints.  This conclusion is consistent with the 

conclusion made using the visual approach. 

 

The reader should also have noted that although there are an infinite number of twists that 

describe the kinematics of this parallel constraint system, only four of those twists are 

independent.  Remember also that the constraint topology consisted of only two constraints.  

This fact is consistent with Maxwell‘s observation described in Equation (2.1).  This 

observation will be discussed in greater detail in Chapter 5 where it will be mathematically 

proven for every system. 
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CHAPTER 4:   

“Projective Geometry” 

This chapter applies basic concepts of projective geometry to find the relation between pure 

rotational twists and pure translational twists.  This relation is useful to the FACT method 

because it creates multiple options for visually expressing the same degree of freedom. 

 

4.1 Pure Translations 

This section provides insights about pure translations.  Chapter 3 demonstrated that a twist with 

an infinite pitch is a pure translation.  To conceptually understand why this is the case, recall that 

the pitch of a twist is the ratio of the translational motion along the twist‘s line to the rotational 

motion about the twist‘s line.  If, for example, an object translates a large distance as it 

simultaneously rotates a small amount, that object‘s motion may be described by a twist with a 

large pitch.  It makes sense, therefore, that the motion of an object that purely translates without 

rotating at all is described by a twist with a pitch that approaches infinity. 

 

A pure translational twist‘s pure rotational velocity vector, w


, must also be a zero vector since a 

pure translational motion involves no rotational motion.  A pure translational twist vector will, 

therefore, always be expressed as 
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where v


 is a translational velocity vector whose components are never all zero.  This fact may 

cause the reader to question how the v


 vector could have any non-zero components given its 

dependency on the w


 vector that has all zero components.  The dependence of the w


 vector on 

the v


 vector was given in Equation (3.5) from Chapter 3 and is given again here as 

 

 

Equation (4.2) helps answer the question.  Note that although the cross product in the first half 

of the equation will become a zero vector as w


 approaches a zero vector, the second half of the 

equation will not be a zero vector as w


 approaches a zero vector because the pure translational 

twist‘s pitch, p, approaches infinity.  If, therefore, pure translational twists‘ pitch values did not 

all approaching infinity, pure translational twists would all be zero vectors.  This could not be the 

case since zero vectors contain no information about translations. 

 

More differences between pure translational twists and other twists are worth mentioning.  Other 

twists such as pure rotations or screws require the specification of a location vector, c


, and an 

orientation vector, w


, with a pitch value, p, to define its twist line in three-space.  Since, 

however, no rotational motion occurs with a pure translation, the location vector, c


, is not 

necessary to specify.  This conclusion is mathematically confirmed by noting that since the cross 

product in Equation (4.2) will always drop out of the equation when the w


 vector is a zero 

vector, the value of the location vector, c


, does not matter.  In other words, the location of a pure 

translational twist in three-space is unimportant, as long as the direction of translation is 

correctly specified.   

 

The orientation vector of pure translations is also different from the orientation vector of other 

twists.  Recall that the orientation vector of pure rotations and screws is the rotational velocity 

vector, w


.  Since this vector is a zero vector for pure translations, however, the velocity vector, 

v


, is the orientation vector of a pure translation.  This vector is the vector that points along the 

twist‘s line and determines the direction of translation. 

 

The following example will help clarify pure translations.  Suppose one wished to decompose 

the twist  TT 500000


 to find its twist line in three-space for a box located at the 

  wpwcv


 . (4.2) 
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origin as shown in Figure 4.1.  One knows that this twist is a pure translation with a pitch of 

infinity because its vector is expressed in the form given by Equation (4.1).  The translational 

velocity vector, v


, is  Tv 500


.  Since this vector is the orientation vector for pure 

translations, the twist‘s line is oriented parallel to the z-axis and will allow the box to translate in 

this direction.  It is also important to note that it doesn‘t matter where the black twist line is 

located.  Every translational twist line pointing along the z-axis will cause the box to move with 

the same translational motion as any other translational twist line pointing in the same direction 

located at any other position as shown in Figure 4.1. 

 

4.2 Pure Rotational “Hoops” 

This section explains how pure rotations may be used to express pure translations.   

 

To begin, basic facts proven by projective geometry will be reviewed [33].  The first fact states 

that: 

A line is a circle with an infinite radius. 

This fact may be conceptually understood by considering the definition of curvature.  The 

curvature at any point on any curved line is defined by the inverse of the radius of the circle 

whose curvature is identical to the curvature at the point of interest on the curved line as shown 

in Figure 4.2.  This radius, r, is called the radius of curvature. 
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p = ∞p = ∞

 

Figure 4.4: A box translating along the z-axis may be expressed using any pure translational twist line 

(thick black) that is parallel to the z-axis.  The location of the pure translation doesn‘t matter, only its 

orientation. 
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A line, by definition, is linear and has no curvature.  The curvature of a circle will approach zero 

as its radius approaches infinity.  A line is, therefore, essentially a circle with an infinite radius.  

Projective geometry texts provide a more extensive and thorough proof of this fact.  

 

Another important axiom of projective geometry states that: 

Any two planes are incident with at least one line [34]. 

This statement is true for any planes including planes that are parallel.  To better understand this 

fact conceptually, imagine two planes that intersect at a line in finite space.  As the planes 

become more and more parallel, this line of intersection moves farther and farther away until the 

planes become parallel at which point the line of intersection is at infinity as shown in Figure 

4.3.  This line must be a circle with an infinite radius because the two parallel planes shown as 

squares in the figure will intersect each other at the same line (dashed orange) along all four of 

the square‘s edges at infinity. 

r

O

Curvature at point O = 1/r

r

O

r

O

Curvature at point O = 1/r

r

O

 

Figure 4.2: Definition of curvature for a point O on a curved line. 
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The concept depicted in Figure 4.3 is similar to the concept depicted in Figure 2.5 from 

Chapter 2.  This observation leads to another important axiom of projective geometry: 

Any two coplanar lines are incident with at least one point [34]. 

Note the duality of this axiom with the previous axiom.  Recall from Chapter 2 that this axiom 

applies to parallel lines as well.  The reader may, however, erroneously deduce that if parallel 

lines intersect, they would intersect at two distinct points infinitely far apart.  In actuality, 

however, these two points are the same point at infinity because both parallel lines are circles 

with an infinite radius. 

 

These concepts will now be applied to finding the relationship between translational and 

rotational degrees of freedom.  Consider a block in finite space that may vertically translate up 

and down along a pure translational twist line (black) as shown in Figure 4.4.  Note that this 

translational motion may equivalently be expressed as a pure rotational twist line (red) that is 

∞∞

 
 

Figure 4.3: Parallel planes intersect at a line (dashed orange) at infinity 
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orthogonally skew to the translational line and is infinitely far away from the block translating.  

Since this pure rotational freedom line is at infinity, it is best depicted as a circle with an infinite 

radius.  In this thesis, such pure rotational circles that represent pure translational motions will be 

called pure rotational hoops. 

 

Also note that since they exist at infinity, pure rotational hoops require no finite location vectors 

similar to pure translational twist lines.  Similar to pure translations, therefore, the orientation of 

pure rotational hoops is all that matters.  The normal vector of the plane of the pure rotational 

hoop always points in the direction of the translation it represents. 

 

To prove this relationship, consider an example of a system consisting of an arbitrary number of 

constraint lines that lie in arbitrary locations on two parallel planes as shown in Figure 4.5.  If 

Blanding‘s Rule of Complementary Patterns is applied to find the system‘s freedom lines, it can 

be determined that only one line exists that intersects every constraint line on the two parallel 

planes at least once.  This freedom line is infinitely far away from the system‘s constraints and is 

shown as a pure rotational hoop whose normal vector is orthogonal to the two parallel planes in 

Figure 4.5.  Since this pure rotational hoop exists within the system, one would expect the 

existence of a pure translation that points in a direction normal to the two parallel planes because 

pure rotational hoops and pure translations represent equivalent motions.  Equation (3.13) from 

p = 0

p = ∞

∞

Pure translation

Pure rotation

p = 0

p = ∞

∞

Pure translation

Pure rotation

 

Figure 4.4: A pure translation expressed as a pure rotational hoop 
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Chapter 3 can be used to verify that such a pure translation exists.  Although the shortest 

distance, d, between the twist line in Figure 4.5 and each constraint line varies depending on 

where the constraints lie relative to the twist line, all twist lines that are orthogonal to both planes 

will always have a skew angle of 90 degrees with respect to every constraint line.  According to 

Equation (3.13), therefore, such twists will be pure translations with infinite pitch values as 

expected. 

 

4.3 Multiple Pure Translations 

This section presents observations of systems with multiple pure translations and provides tools 

that are needed to express infinite sets of pure translations as infinite sets of pure rotational 

hoops. 

 

First note that no system exists that contains more than three independent pure translational 

twists.  This observation is true since only three orthogonal independent directions exist in three 

dimensions.  Furthermore, upon inspection of Equation (4.1), note that only three non-zero 

components exist that could be varied to make three independent translational twists. 

 

p = 0

p = d tan 90 = ∞

∞

p = 0

p = d tan 90 = ∞

∞

 

Figure 4.5: A system of constraints that lie on two parallel planes contains a pure rotational hoop and a 

pure translation in a direction normal to the planes.  Both of these twists represent the same motion. 
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A system of three independent pure translations could be represented as a sphere containing an 

infinite number of pure translational lines (black) that all intersect at a single point.  Only free 

standing objects possess three independent pure translations (unless the system may be 

constrained by constraints with non-zero q values).  This observation becomes clear when one 

considers adding a single ideal constraint to a free standing object.  The first degree of freedom 

the object loses will always be a pure translation along the axis of the constraint by definition of 

an ideal constraint. 

 

A system of two independent pure translations could be represented as a disk of pure 

translational twist lines (black) as shown in Figure 4.6.  These same motions could also be 

represented as pure rotational hoops.  Imagine an infinite number of rotational hoops with 

normal vectors that point in directions that correspond to the directions of every pure translation 

within the black disk.  These hoops would fill a space that resembles a beach-ball-like sphere 

that has a radius of infinity and contains an infinite number of pure rotational freedom lines on 

its surface.  These freedom lines all intersect at a single point at infinity.  This point is also 

intersected by the dashed black line that is orthogonal to the black disk of pure translations and 

passes through its center point as shown in Figure 4.6. 
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If the pure rotational hoops (red) shown in Figure 4.6 are still unclear, consider an infinite 

number of pure rotational lines that are parallel to the dashed black line and are all separated an 

equal distance from it.  These pure rotational lines will more accurately represent the motions 

expressed by the pure translations in the disk the farther they are moved away from this dashed 

black line.  Only when these pure rotational lines are infinitely far away from the dashed black 

line, will they exactly express the same motions as the pure translational disk.  When these pure 

rotational lines are infinitely far away, they may be thought of as pure rotational hoops as was 

discussed in the previous section.  Projective geometry demonstrates that all of these parallel 

lines will all intersect at the same point at infinity [34]. 

 

∞∞

 

Figure 4.6: Two independent pure translational motions represented as a disk of pure translations (black) 

and as a sphere with an infinite radius consisting of an infinite number of pure rotational hoops (red) 
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4.4 Finding Hoops 

This section presents a quick method for identifying the existence and orientation of pure 

rotational hoops for any system with any arbitrary constraint topology.   

 

The first step is to determine how many constraints exist in the system and then to identify their 

orientation vectors, f


.  The second step is to take the cross product of all of these orientation 

vectors.   

 If all of the resulting vectors are zero vectors, the system has two independent pure 

translations and may be expressed as the beach-ball-like sphere of hoops from Figure 4.6 

where the f


 vectors will all be parallel and will intersect the sphere‘s point at infinity. 

 If at least one of the resulting vectors is a non-zero vector and if all of the non-zero 

vectors point in the same direction (if there is more than one non-zero vector), then there 

exists a single translation that may be expressed as a rotational hoop whose normal vector 

points in the direction of the non-zero vector or vectors resulting from the cross products. 

 If any of the resulting non-zero vectors point in different directions with respect to each 

other, no rotational hoops will exist and not a single pure translation will exist in the 

system. 

 

The following example uses this method.  Suppose one wished to know if the system of three 

constraints shown in Figure 4.7 has any pure translations or pure rotational hoops.  First note the 

orientation vectors of the three constraints: 1f


, 2f


, and 3f


.  The first two constraint lines are 

parallel.  The third constraint line is skew relative to the first two parallel constraint lines with a 

skew angle of 90 degrees.  Second, use the right-hand rule to determine the directions of all the 

vectors that result in taking the cross product of all of the orientation vectors.  The cross product 

of the first two constraint orientation vectors is a zero vector.  The cross product of the first 

constraint orientation vector with the third constraint orientation vector is a vector that points in a 

direction orthogonal to the plane that the first two constraints lie on.   The cross product of the 

second constraint orientation vector with the third constraint orientation vector is also a vector 

that points in a direction orthogonal to the same plane.   Now that the direction of all of the 
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resulting vectors is known, check them with the conditions listed under the bullet points form the 

method discussed earlier.  For this example, the second bullet point applies since the two 

resulting vectors that aren‘t zero vectors point in the same direction.  This system will, therefore, 

have a pure translation that may be expressed as a rotational hoop whose normal vector, v


, 

points in the direction of the two non-zero resulting vectors, which is the direction orthogonal to 

the plane on which the first two constraints lie. 

 

 

 

 

f1

f2

f3

v

f1

f2
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v

 

Figure 4.7: An example for identifying the rotational hoops/translations of a system quickly by taking the 

cross product of all the constraint line orientation vectors, f


. 
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CHAPTER 5:   

“Freedom and Constraint Space” 

This chapter introduces the concept of freedom and constraint spaces as visual representations of 

the complete kinematic and constraint topology of a flexure system 

 

5.1 Freedom Space 

This section introduces the concept of freedom spaces.  To begin, the concept of a freedom set is 

defined.  A freedom set is a space that contains an infinite number of twist lines that may be 

represented using a simple geometry such as a sphere, box or plane.  The two red disks of 

freedom lines from the system studied in Chapter 2 shown in Figure 2.10, were each examples 

of freedom sets.  Although each line in those disks is a pure rotational freedom line, freedom sets 

may also be geometric entities that contain pure translations or screws.   

 

An example should clarify the concept of identifying freedom sets.  Consider the system shown 

in Figure 5.1 of a block constrained by two constraints whose constraint lines (blue) intersect 

inside the block. 

 

Figure 5.1: A block constrained by two compliant beams with constraint lines (blue) that intersect inside 

the block. 
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The allowable motions of this system include every pure rotational freedom line that intersects 

both constraint lines at least once according to Blanding‘s Rule of Complementary Patterns.  As 

one searches for all of these lines that satisfy this condition, one notices that familiar geometric 

entities emerge that act as sets that contain infinite numbers of these lines.  The sphere in Figure 

5.2, for instance, represents a set of every line that intersects the intersection point of the two 

constraint lines (blue).  Every line inside this sphere is a pure rotational freedom line (red) of the 

system.  The plane outlined in red in Figure 5.2 also represents a set of infinite freedom lines 

that all lie on the same plane of the two intersecting constraint lines.  Every line on this plane 

will intersect both constraint lines at least once in finite space or at infinity if they are parallel to 

either of the constraint lines.  The pure rotational hoop also intersects both constraint lines.  The 

pure translation that this hoop represents points in the direction of the normal vector of the red 

plane. 

 

Figure 5.2: The pure rotational freedom lines (red) for the block system with two constraint lines (blue) 

 

Not only have all of the pure rotational freedom lines been successfully located, but geometric 

entities have been determined that represent all of these lines collectively and thus the need to 

draw each line individually has been eliminated.  In actuality, there are more twist lines for this 

system that have not yet been identified, but they are neither pure rotations nor pure translations.  

They are screws with non-zero finite pitch values that may be found using the visual or 

mathematical approach discussed in Chapter 3.  If one was to find these screws, they could also 

be represented visually using geometric entities, but since this is more complicated this particular 
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example will be revisited in Chapter 7.  For now, it is sufficient to have found three freedom 

sets that contain every allowable pure rotational freedom line—a sphere, a plane, and a hoop.  

These freedom sets are each shown in Figure 5.3. 

Plane Sphere Rotational HoopPlane Sphere Rotational Hoop
 

Figure 5.3: The three pure rotational freedom sets for the block system of two intersecting constraints 

 

Now that the concept of a freedom set is understood, the concept of a freedom space is ready to 

be defined.  The freedom space of a system is the combination of all of the system‘s freedom 

sets.  This includes freedom sets containing pure translations or screws.  Essentially, a system‘s 

freedom space is a visual representation of the complete kinematics of that system.   

 

Since ideal constraints were used to develop this theory, the twists inside freedom spaces 

represent every infinitely compliant motion that the rigid block of the system could move with 

for small displacements.  Consequently, everywhere that there isn‘t a twist line in three-space 

represents a motion of infinite stiffness that the rigid block could not move with.  In reality, 

however, every conceivable line in three-space would have some finite stiffness associated with 

it.  Therefore, this theory finds the freedom spaces that contain only practical twist lines of 

greatest compliance. 
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5.2 Constraint Space 

This section introduces the concept of constraint spaces and presents a visual and mathematical 

approach for finding these spaces for any given system of twists. 

 

5.2.1 Redundant and Non-redundant Constraints 

Before constraint space may be properly introduced, it is important to first understand the 

concepts of redundant and non-redundant constraints.  This section discusses these concepts.    

 

To best explain the concept of constraint redundancy, the example of the block with two 

intersecting constraint lines from the previous section will be considered again.  Suppose a third 

constraint is added to the block such that all three constraint lines lie in the same plane and 

intersect at the same point inside the block as shown in Figure 5.4. 

 

Figure 5.4: The block from the previous example with an extra constraint whose constraint line lies in the 

same plane as the other two constraint lines and intersects them at the same point. 

 

If the twists that complement this new system of three constraints were found, the freedom space 

of this system would be identical to the freedom space of the system containing only two 

intersecting constraints.  This third constraint, therefore, has no effect on the kinematics of the 

block.  In fact, no matter how many ideal constraints are added to the block such that they all lie 
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on the same plane and intersect at the same point, the freedom space of the system will not 

change.  In practice, the flexure system‘s stiffness, load capacity, and stability change but the 

system‘s kinematics do not.  To be convinced that the freedom space remains unchanged, 

consider a disk of infinite constraint lines (blue) and use Blanding‘s Rule of Complementary 

Patterns to find all freedom lines (red) that intersect all of these lines at least once as shown in 

Figure 5.5.  Note that the freedom space is identical to the system with only two intersecting 

constraint lines. 

 

Figure 5.5: A disk containing an infinite number of constraint lines (blue) has the same freedom space 

(red) as the previous example of two intersecting constraint lines 

 

Note also that if less than two constraints are selected from the disk, the freedom space of the 

system changes completely.  The concluded can be drawn, therefore, that two non-redundant 

constraints exist within the system shown in Figure 5.5.  A constraint is non-redundant if when it 

is added to or removed from a system, the kinematics or the freedom space of that system 

changes.  Furthermore, a constraint is redundant if when it is added to or removed from a system, 

the freedom space of that system remains unchanged.  Every constraint selected from the blue 

disk in Figure 5.5, therefore, is redundant as long as two of them have already been selected. 

 

Again consider the block in Figure 5.4.  Two of the three constraints are non-redundant while 

one of them is redundant.  The reader may wonder which of the three constraints is redundant.  

The answer is that no constraint may be singled out as the redundant constraint.  Any of the three 
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constraints could be removed from the block and the kinematics of the system would remain the 

same.   

 

This observation makes more sense in the context of the mathematical definition of redundant 

and non-redundant constraints.  This definition will now be presented.  Recall that constraints are 

modeled as wrenches.  The number of wrench vectors that are independent in a particular system 

of constraints is the number of non-redundant constraints that that system has.  Likewise, the 

number of wrench vectors that are dependent is the number of redundant constraints in that 

system. 

 

The same example of the block with three intersecting constraints will be used to demonstrate 

this concept.  First, express the three constraints as wrench vectors by using the location and 

orientation vectors, r


 and f


 respectively, defined in Figure 5.6.   
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Figure 5.6: Three wrenches (blue) from the previous block example of three intersecting constraint lines 

shown in Figure 5.4. 

 

Once these three wrench vectors have been constructed, create a wrench matrix by using each 

wrench vector as a row inside a 63  matrix.  The number of independent and dependent 
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wrenches may be determined by applying Gaussian Elimination to this wrench matrix as shown 

in Figure 5.7.  The number of non-zero row vectors in the resulting matrix is the number of 

independent wrenches and the number of zero row vectors in the resulting matrix is the number 

of dependent wrenches.  Consequently, this information reveals how many constraints are non-

redundant and how many constraints are redundant. 
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Figure 5.7: Gaussian elimination of the wrench matrix reveals two non-redundant constraints and one 

redundant constraint for the system of three intersecting constraint lines.  Pivots are circled in red. 

 

As expected, two of the constraints are non-redundant and one of the constraints is redundant for 

the system of three intersecting constraint lines that lie in the same plane and intersect at a 

common point. 

 

5.2.2 Constraint Sets and Space 

A constraint set is a space that contains an infinite number of constraint lines that may be 

represented using a simple geometry such as a sphere, box or plane.  The concept is identical to 

the concept of a freedom set except a constraint set is a space that contains constraint lines 

instead of twists.  The blue disk of constraint lines in Figure 5.5 is an example of a constraint 

set. 

 

The concept of constraint space is also very similar to the concept of freedom space.  The 

constraint space of a system is the combination of all of the system‘s constraint sets.  Since all 

constraints will be modeled as ideal constraints in this thesis, every constraint space will contain 

blue constraint lines that are modeled as wrenches with q values equal to zero only.  Essentially, 

the constraint space of a system is the system‘s complete constraint topology.  Constraint space 
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is a visual representation of all the possible locations from which a designer could select a 

constraint without changing the freedom space of the system.  Since the blue disk of constraint 

lines from Figure 5.5 is the only constraint set for the example studied in this section, it is also 

the complete constraint space of the system. 

 

Unlike freedom space, however, the constraint sets within a system‘s constraint space must be 

labeled with the appropriate number of non-redundant constraints that exist within each set to 

inform the designer of the minimum number of constraints to select in order to ensure the desired 

system kinematics.  The constraint set from the constraint space of Figure 5.5, for example, 

should be labeled with a two since it contains two non-redundant constraints. 

 

For more complex systems, it is not always clear which constraints should be selected from 

within which constraint sets such that they are non-redundant and such that the system will move 

with the desired degrees of freedom.  The concept of sub-constraint spaces will, therefore, be 

discussed in detail as a solution to this problem in Chapter 8, whereas the concept is only 

introduced in this chapter now for completeness.  Every system‘s sub-constraint spaces lie within 

its complete constraint space.  These sub-constraint spaces are also made of constraint sets that 

are labeled with the number of non-redundant constraints that exist within each set.  These 

concepts will be clarified in later chapters. 

 

5.2.3 Finding Constraint Space 

This section presents two methods for determining a system‘s constraint space given the 

system‘s freedom space.  One of these methods is a visual approach and the other is a 

mathematical approach. 
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5.2.3.1 Visual Approach for Locating Wrenches 

To demonstrate the visual approach for finding a system‘s constraint space given its freedom 

space, the three-constraint, rectangular block system from Chapter 2 will be studied again in this 

section.  This system is shown in Figure 5.8. 

90909090

 

Figure 5.8: A block constrained with three constraints (blue) shown next to its pure rotational freedom 

space (red). 

 

In Chapter 2, the conclusion was drawn that this system‘s freedom space consisted of two pure 

rotational disk freedom sets (red) as shown above.  If the methods discussed in Chapter 3 for 

finding this system‘s freedom space are applied, one would find that these disks alone do not 

make up the complete freedom space.  Sets of screws also exist that have not been shown, which 

are not necessary for finding the complete constraint space of the system by using the visual 

approach of this section.  In fact, the visual approach of this section will generally be able to find 

any system‘s complete constraint space even if all that is known are the pure rotations of the 

system. 
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The visual approach has, in a way, already been taught in the form of Blanding‘s Rule of 

Complementary Patterns.  Until now, however, this rule has been used for finding every pure 

rotational freedom line for a system given a number of constraint lines.  Now the same rule is 

used for finding every constraint line for a system given every pure rotational freedom line.  

Since every freedom line intersects every constraint line at least once, every constraint line must 

also intersect every freedom line at least once.   

 

If one, therefore, wished to locate every constraint line (blue) within the system shown in Figure 

5.8, one would need to find every line that intersects every freedom line (red) also shown in the 

figure.  Note that every line that lies on the horizontal plane will intersect every freedom line in 

the red disk that also lies on that plane either in finite space or at infinity.  Only the lines, 

however, on that horizontal plane that also intersect the center point of the other vertical disk of 

freedom lines will intersect every freedom line at least once.  All the lines that satisfy these 

conditions may be represented as a disk of infinite constraint lines (blue) shown in the first 

picture in Figure 5.9.  By this same reasoning, one can also find another disk of constraint lines 

(blue) that lies on the vertical plane and shares a center point with the disk of freedom lines on 

the horizontal plane shown in the second picture of Figure 5.9. 

90 90
(1) (2)

9090 9090
(1) (2)

 

Figure 5.9: Finding all the constraint lines (blue) that intersect all the freedom lines (red) at least once 
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These two disks of constraint lines represent every line that satisfies Blanding‘s Rule of 

Complementary Patterns and consequently represent the system‘s complete constraint space.  

Each of these disks is a constraint set.  Notice that the constraint lines of the original three 

constraints constraining the rectangular block shown in Figure 5.8 are contained within the two 

disk constraint sets as shown with dark blue lines in the first picture of Figure 5.10.  The second 

picture in Figure 5.10 is a picture of the complete constraint space of the system with the two 

constraint sets labeled for instructing the designer in appropriately selecting non-redundant 

constraints from within each of the spaces.  To properly select three non-redundant constraints 

for this system, therefore, Figure 5.10 reads that any two constraints may be selected from 

within one of the disks, but only one constraint may be selected from within the other disk.  That 

constraint cannot lie on the dashed intersection line of the vertical and horizontal planes. 

90
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from the disk
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the disk that isn’t 

on the dotted line

90
(1) (2)

9090
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909090
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Figure 5.10: Original three constraint lines (dark blue) lie within the system‘s complete constraint space 
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5.2.3.2 Mathematical Approach for Locating Wrenches 

The same example used in Section 5.2.3.1 to demonstrate the visual approach will be used again 

in this section to demonstrate the mathematical approach for finding a system‘s constraint space. 

 

First determine the fewest number of twists needed to mathematically find the system‘s 

constraint space.  One could prove that the three constraints in the example from Figure 5.8 are 

non-redundant by first constructing a 63  wrench matrix and then by performing Gaussian 

Elimination on this matrix to check for row dependency similar to the approach described in the 

example from Section 5.2.1.  Since these three constraints are non-redundant, Equation (2.1) 

from Chapter 2 can be used to deduce that the freedom space of this system consists of three 

independent twists.  Although the two pure rotational freedom set disks shown in Figure 5.8 

contain an infinite number of pure rotational twists, only three of these twists are necessary for 

describing the entire freedom space of the system. 

 

Now select three specific independent twists from the freedom space of the system shown in 

Figure 5.8.  Suppose the first two of these three pure rotational twists are selected from the disk 

on the horizontal plane and the third pure rotational twist is selected from the disk on the vertical 

as shown in Figure 5.11.  Using the location vectors, c


, and the orientation vectors, w


, given in 

Figure 5.11 and recalling that all the pitch values must equal zero because the twists are all pure 

rotations, construct three independent twist vectors. 
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Figure 5.11: Three independent pure rotational twists (red) from the freedom space of the system shown 

in Figure 5.8. 

 

These three twist vectors may be stacked inside a 63  matrix called a twist matrix where each 

row corresponds to one of the independent twists.  The null space of this matrix represents the 

constraint space of the system and may be shown as 

 

 

 

 

The null space of this particular twist matrix is a linear combination of three independent 16  

vectors.  To describe these vectors as conventional wrenches, their 


 and f


 vectors are 

switched so that they are expressed in the form shown in Equation (3.11).  The result is shown 

below: 
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where A, B, and C may be any real numbers.  The 16  wrench vector at the far right of 

Equation (5.2) is the complete mathematical representation of every possible wrench that 

complements the freedom space shown in Figure 5.8.  This resultant wrench‘s axial force and 

torque vectors, f


 and 


, are the following: 

 

 

 

 

Recall, however, that for the purposes of this thesis, not every mathematically possible wrench 

must be found.  Only the wrenches that model ideal compliant constraints with q values that 

equal zero should be found.  One can, therefore, filter these unwanted answers out of the 

resultant wrench vector from Equation (5.2) by setting the q value equal to zero and by defining 

this q value in terms of f


 and 


 as 

 

 

 

Equation (5.4) is analogous to the equation for the pitch of a twist given in Equation (3.4).  If 

Equation (5.3) is plugged into Equation (5.4) and q is set to zero, this equation simplifies to 
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The only allowable wrenches are the ones, therefore, that make Equation (5.5) a true statement.  

This statement is true only when either B or C equals zero. 

 

When B equals zero, the wrenches of interest are expressed as  TCdCAW 000 


 

and have orientation vectors expressed as  TCAf 0


 for all real values of A and C such 

that the orientation vectors will always point in directions parallel to the x-z plane.  To find the 

corresponding location vectors when B equals zero, apply the analogous location matrix equation 

from Equation (3.8) to these wrenches as 

 

  

 

where the diagonal is zero because q=0.  Equation (5.6) may be simplified into two equations 

written as 

 

 

 

If zr  is set equal to zero, a common location vector for all the wrenches is found when B=0.  This 

location vector is  Tdr 00


.  In light of this wrench decomposition, every possible wrench 

for this system when B=0 can now be expressed as a disk of constraint lines that lies on the x-z 

plane and has a center point that lies on the x-axis a distance of d away from the origin as shown 

in Figure 5.12.   

 

When C equals zero, the wrenches of interest are expressed as  TBAW 0000


 and 

have orientation vectors expressed as  TBAf 0


 for all real values of A and B such that 

they will always point in directions parallel to the x-y plane.  The location matrix equation could 

be applied to this decomposition to determine the location vectors, r


, when C=0, but since 
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 T000


, a common location vector for all the wrenches at this condition is known to be 

 Tr 000


.  In light of this wrench decomposition, every possible wrench for this system 

when C=0 can now be expressed as a disk of constraint lines that lies on the x-y plane and has a 

center point that lies at the origin as shown in Figure 5.12.     
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Figure 5.12: Complete constraint space represented as wrenches (blue) 

 

It has now been mathematically verified that these two disks of wrenches represent the only 

acceptable constraint lines within the system‘s constraint space. 
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5.2.4 Problems with Finding Allowable Constraint Spaces 

The fact that flexure system constraints are always modeled as having q values equal to zero 

creates difficulties in finding allowable constraint spaces when given desired degrees of freedom.  

This section discusses the consequences created by this fact. 

 

Constraint spaces are simplified because only wrenches with q values equal to zero are of 

interest.  Since freedom spaces are not limited to twists with zero pitch values, freedom spaces 

will generally include more twist lines that are more complicated to visually describe than 

constraint spaces.  The condition that q only equals zero also allows one to visually express all 

constraint spaces using a single color, blue.  Otherwise, two other colors would need to be 

implemented corresponding to q values that equal infinity and q values that equal a finite, non-

zero real number.  It is also significant to note that constraint spaces will never contain constraint 

hoops because it is not practical to attach a compliant constraint to a stage infinitely far away 

from the center of the stage.  The stage would have to be infinitely large. 

 

The condition that q only equals zero, however, often complicates matters.  As was demonstrated 

previously, when a system‘s wrenches are determined, there is a need to filter out all the 

wrenches that don‘t satisfy this condition.  This process may be tedious and in some instances 

mathematically impossible.  The worst news is that this condition often limits the degrees of 

freedom with which a designer may wish to design a system.  Instances exist in which some 

desired degrees of freedom may not be achieved without including other unwanted degrees of 

freedom. 

 

The following is an example of this predicament.  Suppose one wished to design a system that 

could only move with a disk of pure translations as shown in Figure 5.13.  Every twist inside 

this disk may be expressed as the linear combination of two independent pure translational twists 

also shown in Figure 5.13. 
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Figure 5.13: A disk of pure translations (thick black lines) may be mathematically described by two 

independent twists with w


= 0 and p=∞. 

 

These two pure translational twists may be stacked into a 62  twist matrix where each row 

corresponds to one of the twists.  The null space of this twist matrix is a linear combination of 

four independent vectors.  To describe these vectors as conventional wrenches, their 


 and f


 

vectors are switched so that they are expressed in the form shown in Equation (3.11).  The result 

is shown below: 

 

 

 

 

 

 

 

where A, B, C and D may be any real numbers.  The 16  wrench vector at the far right of 

Equation (5.8) is the complete mathematical representation of every possible wrench that 

satisfies the freedom space shown in Figure 5.13.  This resultant wrench‘s axial force and torque 

vectors, f


 and 


, are the following: 
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The wrenches that have finite, non-zero q values must now be filtered out by plugging q=0 and 

Equation (5.9) into Equation (5.4).  The result is given by 

 

 

The only allowable wrenches are the ones that make Equation (5.10) a true statement.  This 

equation will only be true if either A or B equals zero.  If A, however, equals zero, Equation 

(5.8) suggests that the resultant wrench will be a pure torque wrench with a q value of ∞ and is, 

therefore, not acceptable.  Therefore, B must equal zero if any wrenches are to satisfy the initial 

requirements.  If, however, B must always equal zero, there are no longer four independent 

wrenches that complement the two desired degrees of freedom with q values equal to zero since 

only three constants A, C, and D remain in Equation (5.8).   

 

If one wants to design a flexure system that moves with a disk of pure translations, one must use 

only three non-redundant constraints whose linear combination results in a vector expressed as 

 TDCAW 000


.  Using only three non-redundant constraints will, however, require 

that the system consist of three independent twists instead of the desired two independent pure 

translations according to Maxwell‘s observation in Equation (2.1).  This means that the designer 

will have to make due with an extra, undesired, rotational degree of freedom.   
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5.2.5 Proof of Maxwell’s Equation 

Maxwell‘s observation described in Equation (2.1) will now be proven.  First note that wrench 

matrices will always have 6 columns corresponding to the 6 components inside a single wrench 

vector.  The number of rows a wrench matrix has depends on the number of wrenches or 

constraints the system has.  The number of independent wrenches or non-redundant constraints 

in the system may be determined by performing Gaussian elimination on the wrench matrix.  The 

number of independent wrenches is the number of rows in the matrix that are not eliminated that 

contain pivots.  In other words, the number of non-redundant constraints is the rank of the 

matrix.  From linear algebra, it is common knowledge that the number of independent vectors 

that results from finding the null space of a matrix is the number of columns that matrix has 

subtracted from that matrix‘s rank.  Therefore, applying this statement to wrench matrices, the 

number of independent twists that complement any system of constraints is 6 subtracted from the 

number of non-redundant constraints inside that constraint topology.  This is what Equation 

(2.1) says.  

 

5.3 Unique and Finite Spaces 

This section introduces the idea that freedom and constraint spaces are uniquely linked and finite 

in number.  This idea enables FACT to function.   

 

The first significant fact to note is that the freedom space of any system is unique to its constraint 

space and that the constraint space of any system, therefore, is also unique to its freedom space.  

This fact should seem obvious after mathematically generating constraint spaces from freedom 

spaces and after generating freedom spaces from constraint spaces.  Figure 5.14 and Figure 5.15 

demonstrate the uniqueness of the freedom and constraint spaces for the systems studied in this 

chapter.  This principle that complementary spaces are uniquely linked with each other is called 

the Principle of Complementary Topologies. 
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Figure 5.14: The freedom space of the system studied in Section 5.2.1 is unique to its constraint space  
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Figure 5.15: The freedom space of the system studied in Section 5.2.3 is unique to its constraint space  

 

The next important fact worth noting is not obvious at all.  Since an infinite number of possible 

constraint lines with an infinite number of possible orientations and locations in three-space 

exist, it would be tempting to hypothesize that an infinite number of possible freedom and 

constraint spaces exist as well.  This is, however, not the case.  There are actually a finite number 

of freedom and constraint spaces.  More specifically, there are 26 freedom spaces each with a 

unique constraint space.  Finding these 26 spaces is important because once all the spaces have 

been found, they may be used as powerful tools for designing or analyzing all possible flexure 

systems.  One could say that once all 26 freedom and constraint spaces have been found, every 

possible flexure system has already been designed. 
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The idea that only a finite number of freedom and constraint spaces exists is suggested by the 

fact that no more than 6 constraints may be non-redundant.  Any system with 6 non-redundant 

constraints will have an empty freedom space and will be immovable.  Any other constraint 

added to such a system must be redundant and, therefore, cannot generate any new freedom 

spaces.  This fact suggests that all the possible freedom spaces exist within systems that contain 

one through 6 non-redundant constraints which suggests a limit to the number of freedom spaces 

that exist. 

 

The task then is to determine how many different ways non-redundant constraints may be 

organized within each of the 6 cases to find every freedom and constraint space.  Each case is 

identified by the number of non-redundant constraints within the system.  The second case, for 

example, contains systems with two non-redundant constraints.  Only three different freedom 

and constraint spaces exist within the second case because there are only three ways of 

organizing two non-redundant constraints: parallel, intersecting, and skew.  Once every different 

way of organizing the non-redundant constraints inside each of the 6 cases has been found, every 

freedom and constraint space may likewise be found.  This will become clear in Chapter 7 and 

Chapter 8 where the 26 pairs of spaces will be identified and described. 
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CHAPTER 6:   

“Ruled Surfaces” 

This chapter introduces and mathematically describes three ruled surfaces that appear often in 

the 26 freedom and constraint spaces.  A ruled surface is a surface that may be swept out by 

moving a line in space.  In other words, it is a surface made of an infinite number of lines.  Any 

given point that lies on such a surface is intersected by at least one line that also lies entirely on 

that surface.  These surfaces appear often as sets in many freedom and constraint spaces since 

freedom and constraint sets are, by definition, spaces that contain twist and constraint lines [35]. 

 

6.1 Hyperbolic Paraboloid 

This section describes hyperbolic paraboloids [36].  A hyperbolic paraboloid is a ―saddle 

shaped‖ infinite three dimensional surface with hyperbolic and parabolic cross-sections.  A 

typical hyperbolic paraboloid is shown in Figure 6.1.  Note also that every line drawn on its 

surface is a straight line that lies entirely on the surface at all points along the line out to infinity.  

For this reason it is a ruled surface. 
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Every hyperbolic paraboloid may be expressed as 

 

 

 

where a and b may be any real numbers.  This equation is true only when a coordinate system is 

properly assigned to the center of the hyperbolic paraboloid as shown in Figure 6.2. 

 

When x=0, Equation (6.1) becomes a parabola centered at the origin that lies on the z-y plane.  

Every point on that parabola has a positive z value.  When y=0, Equation (6.1) becomes another 

parabola centered at the origin that lies on the z-x plane.  Every point on that parabola has a 

negative z value.  These primary parabolas are orthogonal and touch each other only at the 

origin.  They are shown with dotted black lines in Figure 6.2.  If either x or y are set to some 

constant value, and the other variable is allowed to vary, similar parabolic cross-sections are 

Figure 6.5: Hyperbolic Paraboloid [36] 
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Figure 6.2: Hyperbolic paraboloid shown with coordinate system. 
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created at infinite other locations on planes parallel to either the z-y or z-x planes.  Every 

parabola that lies on a plane parallel to the z-y plane will be a positive parabola that rises 

upward, and every parabola that lies on a plane parallel to the z-x plane will be a negative 

parabola that sinks downward. 

 

Hyperbolic cross-sections are created when a hyperbolic paraboloid is sliced along planes that 

are parallel to the x-y plane.  Each plane cut at different heights along the z-axis will create two 

opposing hyperbolas of equal size and shape.  These hyperbolas are shown in orange and purple 

on the hyperbolic paraboloid in Figure 6.3. 

 

If the hyperbolas lie on planes parallel to and above the x-y plane at positive z values, the 

hyperbolas are colored orange.  If the hyperbolas lie on planes parallel to and below the x-y 

plane at negative z values, the hyperbolas are colored purple.  All of these hyperbolic cross-

sections approach the same two asymptotic lines.  These lines lie on the x-y plane and intersect at 

the origin.  Their equation, therefore, is found by setting z=0 in Equation (6.1) and by solving 

for y in terms of x.  This simplifies to the two equations 
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Figure 6.3: Purple hyperbolic cross-sections have negative z-values and orange hyperbolic cross-sections 

have positive z-values. 
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shown in Figure 6.2 and Figure 6.3 as dashed grey lines. 

 

Note also that if a=b from Equation (6.1) such that both primary parabolas rise and sink at the 

same rate, these asymptotic lines will be orthogonal to each other and will be offset from the x- 

and y-axes by 45 degrees.  If they are not equal to each other, the angle between the asymptotic 

lines varies as shown in Figure 6.4.  This observation will be revisited in Chapter 7. 

 

Hyperbolic paraboloids are not only all ruled surfaces, they are also all doubly ruled surfaces.  A 

doubly ruled surface is a surface on which two families or sets of lines lie.  Any point on the 

surface of a doubly ruled surface will, therefore, be intersected by two and only two straight lines 

that both lie entirely on the surface.  This may be seen in both hyperbolic paraboloids shown in 

Figure 6.1 and Figure 6.2. 

 

6.2 Hyperboloid 
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Figure 6.4: If a=b, the asymptotic lines (dashed grey) are orthogonal.  Otherwise they are not. 
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This section describes both circular and elliptical hyperboloids [37].  A circular hyperboloid is an 

infinite three-dimensional surface with hyperbolic and circular cross-sections.  An elliptical 

hyperboloid is an infinite three-dimensional surface with hyperbolic and elliptical cross-sections.  

A typical hyperboloid is shown in Figure 6.5. 

 

Every circular hyperboloid may be expressed as 

 

 

 

where L is the radius of the circular cross-section on the x-y plane and c is a real number that 

determines the rate that the hyperboloid fans out as it travels away from the circle along the z-

axis.  This equation is true only when a coordinate system is properly assigned to the center of 

the circular hyperboloid as shown in Figure 6.6. 

 

Figure 6.5: Hyperboloid [37] 
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Two opposing hyperbolic cross-sections are created by slicing a circular hyperboloid along a 

plane that intersects the z-axis.  Since the hyperboloid is circular, every plane rotated about the z-

axis will produce identical hyperbolic cross-sections.  Circular cross-sections are created by 

slicing a circular hyperboloid along planes that are parallel or coincident with the x-y plane.  The 

radii of the circles increase the farther the circles are away from the x-y plane.  The c parameter 

from Equation 6.3 determines the rate at which the radii of these circles increase as they are 

moved along the z-axis. 

 

Note from Figure 6.6 that circular hyperboloids are also doubly ruled surfaces.  Every point on 

the hyperboloid‘s surface has exactly two lines that intersect at that point and lie entirely on the 

hyperboloid‘s surface. 

 

Elliptical hyperboloids are very similar to circular hyperboloids and may be expressed as 
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Figure 6.6: Circular hyperboloid with a coordinate system.  Radius of the circular cross-section on the x-

y plane is L. 
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where a and b are the lengths of the major and minor axes of the elliptical cross-section on the x-

y plane.  The major and minor axes of this elliptical cross-section are oriented along the x- and y-

axes.  Similar to circular hyperboloids, c determines the rate that the elliptical hyperboloid fans 

out as it moves away from the x-y plane along the z-axis.  An elliptical hyperboloid is shown in 

Figure 6.7. 

 

Two opposing hyperbolic cross-sections are created by slicing an elliptical hyperboloid along a 

plane that intersects the z-axis.  Since the hyperboloid is elliptical, every plane rotated about the 

z-axis will produce different hyperbolic cross-sections.  Elliptical cross-sections are created by 
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Figure 6.7: Elliptical hyperboloid with a coordinate system.  The elliptical cross-section on the x-y plane 

has a major axis of a and a minor axis of b. 
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slicing an elliptical hyperboloid along planes that are parallel or coincident with the x-y plane.  

The major and minor axes of the ellipses increase the farther away they are from the x-y plane. 

 

Note also that an elliptical hyperboloid becomes a circular hyperboloid when a=b in Equation 

(6.4).  The major and minor axes of the elliptical cross-section on the x-y plane will become the 

radius, L, of the circular cross-section on the x-y plane of the hyperboloid.  Finally, note that an 

elliptical hyperboloid is also a doubly ruled surface.   

 

6.3 Cylindroid 

This section describes a cylindroid [38].  A cylindroid, also known as plücker‘s conoid, is an 

infinite three-dimensional ruled surface that is shown in Figure 6.8. 

 

Every cylindroid may be expressed using polar coordinates as 

 

Figure 6.8: Cylindroid [38] 
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where h is the height of the cylindroid along the z-axis.  These equations are true only when a 

coordinate system is properly assigned to the center of the cylindroid as shown in Figure 6.9. 

 

Every cylindroid has two orthogonal principal generators that intersect each other at the origin.  

One of them always lies along the x-axis and the other always lies along the y-axis.  Every 

cylindroid has two extreme generators shown with dashed grey lines in Figure 6.9.  These 

extreme generators are always orthogonally skew with each other.  The principal generators 

always lie on a plane that is parallel to and half way between the two planes that the extreme 

generators lie on.  The skew angles of the principal generators relative to the extreme generators 

are always 45 degrees.  Every point along the z-axis between the two extreme generators is the 

intersection point of two lines within the cylindroid that both lie on a plane that is parallel to the 

x-y plane.  If a cylinder of radius, r, is placed along the z-axis as shown in Figure 6.9, the points 

cosrx   

sinry   

 sincoshz  . 

(6.5) 
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Figure 6.9: Cylindroid with a coordinate system labeled with significant parameters 
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of intersection on the cylinder‘s surface from every line within the cylindroid would look similar 

to a Pringle-Chip-like, sinusoidal contour around the surface of the cylinder (shown as a thin 

dotted line in Figure 6.9).  The only parameter that really changes a cylindroid is the distance 

between the two extreme generators along the z-axis, h.  The radius of the cylinder doesn‘t 

matter since the lines extend to infinity. 

 

A cylindroid is not a doubly ruled surface.  Only a single line will intersect any given point on its 

surface (unless the point lies along the z-axis between the two extreme generators).  This line 

will also lie entirely on the surface of the cylindroid. 
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CHAPTER 7:   

“Cases 1, 2, and 3” 

This chapter describes and validates every constraint space with its unique freedom space within 

the first three cases.  The reader may recall from the final section of Chapter 5 that 6 total cases 

exist.  The case of a system corresponds to the number of non-redundant constraints in that 

system.  The number of types a case has is the number of freedom and constraint space pairs 

within that case, or the number of ―different‖ ways the non-redundant constraints may be arrange 

within the system to produce fundamentally different freedom spaces. 

  

7.1 Case 1: 

This section describes the first case of 6.  The first case consists of all systems that contain only 

one non-redundant constraint.  To find the number of types within this case, one must determine 

how many different ways a single non-redundant constraint may be arranged such that different 

freedom spaces are created.  This may seem obvious for the case of a single non-redundant 

constraint since any single constraint line in three-space will produce the exact same freedom 

space as any other single constraint line oriented anywhere else in three-space.  The orientations 

of the freedom spaces may be different for differently oriented single constraint lines, but the 

fundamental sets they produce will all be the same shapes and spaces with respect to each other 

and are, therefore, the same freedom spaces.  It follows then that this case has only one type or 

pair of freedom and constraint spaces. 

 

 

 

 

 

 



 104 

7.1.1 Case 1, Type 1: 

The constraint space of this type is very simple.  It consists of a single constraint line as shown in 

Figure 7.1. 

 

The only way a redundant constraint could be added to this system without changing its freedom 

space would be to add it somewhere along the same line as shown in Figure 7.2. 

 

The freedom space of this type is, however, complex.  Since this type belongs to the first case, 

one would expect its freedom space to be a linear combination of 5 independent twists from 

Equation (2.1).  First every pure rotational freedom line will be found that satisfies Blanding‘s 

Rule of Complementary Patterns for the single constraint line.  These rotational freedom lines 

form freedom sets that are shown in the following three figures. 

 

1 constraint1 constraint

 

Figure 7.6: Constraint space of Case 1, Type 1 

Redundant ConstraintRedundant Constraint

 

Figure 7.2: Once a single non-redundant constraint has been selected from the constraint space consisting 

of a single constraint line, all other constraints selected from that space will be redundant. 
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Figure 7.3 depicts an infinite number of spherical freedom sets whose center points all lie on the 

constraint line.  In fact, every point along the constraint line is the center point of a single 

spherical freedom set that contains every line that intersects that point in three-space. 

 

Figure 7.4 shows an infinitely large box that represents a freedom set that contains every line 

that is parallel to the constraint line. 

 

The pure rotational hoops shown in Figure 7.5 all intersect the constraint line at a point at 

infinity and represent all pure translations orthogonal to the constraint line. 

 

Figure 7.3: Spherical pure rotational freedom sets (red) that complement the single constraint line (blue) 

 

Figure 7.4: Box freedom set of parallel lines (red) that complements the single constraint line (blue) 
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These pure rotational freedom sets do not, however, represent every possible twist for a single 

non-redundant constraint system.  Screws with non-zero finite pitch values also exist.  These 

screws may be represented as green lines that are tangent to the surface of a cylinder with a 

radius of d as shown in Figure 7.6.  The screws‘ pitch values may be determined using 

Equation (3.13) where θ is the skew angle between the screw line and the constraint line. 

 

Figure 7.5: Pure rotational hoops (red) that complement the single constraint line (blue) 
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These screws combine with the pure rotations and translations shown above to form the complete 

freedom space of this type.  This freedom space is shown in Figure 7.7.  The thick dashed black 

line corresponds to the line along which the constraint line lies. 

Pitch of screw: p = d*tan θ

where c is any integerθ = c*90

If d=0 then θ=90 

Pitch of screw: p = d*tan θ

where c is any integerθ = c*90

If d=0 then θ=90 

 

Figure 7.6: Screw lines with finite non-zero pitch values (green) that complement the single constraint 

line (blue) 

 

Figure 7.7: Freedom space of Case 1, Type 1 
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It is also interesting to note that the entire freedom space could actually mathematically be 

visualized using Figure 7.6 alone without the restrictions placed on the parameters d and θ 

shown in the figure.  The red lines inside each sphere correspond to every possible twist line 

where d=0.  The red parallel lines in the box correspond to every possible twist line where θ=0 

and d is any finite value.  The red hoops correspond to every twist line where θ=0 and d is 

infinite or they correspond to every twist line where θ=90 degrees and d is finite (pure 

translations). 

 

7.2 Case 2: 

This section describes the second case of 6.  The second case consists of all systems that contain 

two non-redundant constraints.  To determine the number of types within this case, the question 

must be asked, ―How many different ways may two non-redundant constraints be arranged such 

that different freedom spaces are created?‖  One reasons that two lines may be arranged in only 

three fundamentally different ways: intersecting, parallel and skew.  It follows then that this case 

has three types or three pairs of freedom and constraint spaces. 

 

7.2.1 Case 2, Type 1: 

This section reviews the case of two non-redundant constraints that intersect at a point in finite 

space.  This case and type have actually already been considered in the example system studied 

in Section 5.1 and Section 5.2.1 of Chapter 5.  It was determined that the constraint space of 

such a system is a disk of constraint lines as shown again here in Figure 7.8.  Once any two 

constraints have been selected from the disk, any other constraint selected from the same disk 

will be redundant. 
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In Chapter 5 Blanding‘s Rule of Complementary Patterns was used to find the pure rotational 

freedom sets within the freedom space of this case and type shown again here in Figure 7.9.  For 

a thorough description of these sets refer to Chapter 5. 

 

These sets do not, however, represent every allowable twist within the freedom space of this 

system.  Screws with finite non-zero pitch values also exist.  To find these screws the visual 

approach discussed in Chapter 3 in Section 3.4.1 will be used. 

 

Consider a twist line oriented in any direction at any location on any plane parallel to the plane 

of the disk of constraints as shown in Figure 7.10.  This line will always be parallel to one of the 

constraint lines in the disk (shown as a blue dashed line in the figure).  Since this twist line is 

parallel to one of the constraint lines, one would expect the twist line to be a pure rotation with 

zero pitch.  But since it is not parallel to and does not intersect the other constraint lines in the 

2 constraints2 constraints

 

Figure 7.8: Constraint space of Case 2, Type 1 

 

Figure 7.9: Pure rotational freedom sets of Case 2, Type 1. 
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disk, the twist line can‘t have a zero pitch and still satisfy Equation (3.13).  This line cannot, 

therefore, be an allowable twist line. 

 

Now consider a twist line on a plane that intersects the plane of the disk of constraint lines at an 

angle, θ, that is not 90 degrees.  The line on this plane also does not pass through the center of 

the disk as shown in Figure 7.11.  As long as the twist line on this plane is not parallel to the 

disk of constraint lines, it will intersect one of the constraint lines (shown as a dashed blue line in 

the figure).  If θ is not 90 degrees between the two planes, the twist line will never be 

perpendicular to the constraint line it intersects.  One, therefore, expects this line to be a pure 

rotational freedom line based on Blanding‘s Rule of Complementary Patterns.  But when one 

considers the other constraint lines in the disk that this twist line‘s pitch value must 

simultaneously complement using Equation (3.13), one finds that such a line is not an allowable 

twist line. 

 

Figure 7.10: A twist line (green) on a plane parallel to the disk of constraint lines (blue) is not an 

allowable twist. 
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The only other line that could be considered would be a line on a plane that intersects the plane 

of the disk of constraint lines at an angle of 90 degrees as shown in Figure 7.12.  Since the angle 

between these planes is 90 degrees, the line on the plane will be perpendicular to the constraint 

line it intersects.  Recall that a twist line that intersects a constraint line at a 90 degree angle 

could have any pitch value.  The question is, therefore, could such a line have a single pitch 

value and simultaneously satisfy Equation (3.13) for every constraint line in the disk?  

Surprisingly the answer is yes. 

θ = 90θ = 90

 

Figure 7.11: A twist line (green) on a plane that intersects the plane of the disk of constraint lines (blue) 

at an angle that is not 90 degrees is not an allowable twist. 
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In order to prove that this type of line is an allowable twist line, a coordinate system must be 

established and parameters that describe the disk and the twist line must be defined as shown in 

Figure 7.13. 

θ = 90θ = 90

 

Figure 7.12: A twist line on a plane that intersects the plane of the disk of constraint lines at an angle of 

90 degrees is an allowable twist. 
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Every location vector for the constraint lines in the disk may be expressed as  Tr 000


.  

Every orientation vector for the constraint lines in the disk may be expressed as 

 Tf 0sincos 


 where Φ may be any real value.  Every value of Φ will correspond to one 

of these infinite constraint lines.  The location vector for the green twist line is  TLc 00


 

where L is the shortest distance from that line to the center of the disk.  The orientation vector for 

the green twist line is  Tw  sincos0


  where α is the angle from the plane of the disk to 

the twist line as shown in Figure 7.13.  One can find the pitch, p, of this twist line by plugging 

these vectors into the pitch equation given in Appendix B as Equation (B.4).  Once these 

substitutions have been performed, the parameter Φ drops entirely out of the equation since the 

disk is symmetric about the z-axis and since every constraint line complements the twist line 

with a single pitch value.  The pitch of a twist line that complements a disk of constraint lines, 

therefore, elegantly and surprisingly simplifies to 
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Figure 7.13: Parameters and coordinate system established for the twist line and disk from Figure 7.12. 
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Equation (7.1) has some obvious parallels to Equation (3.13).  Recall that Equation (3.13) is 

the classic pitch equation that relates a twist to a single constraint line.  Equation (7.1) is a new 

pitch equation that relates a twist to a disk of infinite constraint lines.  The shortest distances L 

and d are analogous as well as the angles α and θ. 

 

Every possible twist with a pitch value given by Equation (7.1) has, therefore, been found for 

Case 2, Type 1 and is represented in Figure 7.13.  The twists that correspond to L values of zero 

will be the pure rotations with zero pitch values represented by the red sphere shown in Figure 

7.9.   The twists that correspond to α angles of zero or 180 degrees will be pure rotations with 

zero pitch values represented by the red plane also shown in Figure 7.9.  The twists that 

correspond to α angles of 90 degrees will be pure translations with infinite pitch values that point 

in directions normal to the plane of the disk of constraints and are represented by the pure 

rotational hoop shown in Figure 7.9.  The complete freedom space, therefore, of Case 2, Type 1 

including all the screws with finite, non-zero pitch values is shown in Figure 7.14. 

 

Figure 7.15 shows how the freedom and constraint spaces of Case 2, Type 1 fit together.  The 

screws with finite, non-zero pitch values are not shown to avoid cluttering the figure. 

tanLp  . (7.1) 

 

Figure 7.14: Freedom space of Case 2, Type 1. 
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7.2.2 Case 2, Type 2: 

This section reviews the case of two non-redundant constraints that are parallel.  This case and 

type have actually already been considered in the example system studied in Section 3.4 of 

Chapter 3.  Using the visual and mathematical approach, the conclusion was drawn that the 

system‘s complete freedom space consists of all twist lines that lie on planes parallel to or 

coincident with the plane of the two parallel constraints as well as twist lines that are pure 

translations that lie on planes that are orthogonal to both constraints.  With this fact in mind, 

Blanding‘s Rule of Complementary Patterns can be used to find the freedom sets that contain 

pure rotations only. 

 

The first pure rotational freedom set is the plane coincident with the plane of the two parallel 

constraints shown in Figure 7.16.  Any line on that plane will be a pure rotational freedom line. 

 

 

Figure 7.15: Freedom space (red) and constraint space (blue) of Case 2, Type 1 together (without the 

screws shown). 

 

Figure 7.16: Planar freedom set (red) containing all pure rotational freedom lines that lie on the plane of 

the two parallel constraint lines (blue) 
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The second pure rotational freedom set is an infinitely large box that contains all the freedom 

lines that are parallel to the parallel constraint lines as shown in Figure 7.17.  Every one of these 

lines will lie on a plane that is parallel to or coincident with the plane of parallel constraints. 

 

The pure translations that lie on planes that are orthogonal to the two parallel constraint lines can 

be expressed as pure rotational hoops that intersect both parallel constraint lines at a point at 

infinity as shown in Figure 7.18. 

 

Figure 7.17: Box freedom set containing all the pure rotational freedom lines (red) that are parallel to the 

two non-redundant constraint lines (blue) 
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The screws of the system with finite, non-zero pitch values will exist on planes that are parallel 

to the plane of the parallel constraints and will be represented as green lines with pitch values 

determine by Equation (3.13).  They are shown in Figure 7.19. 

 

Figure 7.18: Pure rotational hoops (red) that intersect the parallel constraint lines (blue) at a point at 

infinity. 

d = 0

θ = c* 90  where c is any integer

p = d*tan θ

d = 0d = 0

θ = c* 90  where c is any integerθ = c* 90  where c is any integer

p = d*tan θ

 

Figure 7.19: Screws (green) with finite, non-zero pitch values that complement parallel constraint lines 

(blue) 
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Note that if d=0, the twist line shown in Figure 7.19 will represent every pure rotational freedom 

line with zero pitch on the plane of the parallel constraint lines shown in Figure 7.16.  If θ=0 or 

180 degrees for all values of d, the twist line will represent every pure rotational freedom line 

with zero pitch in the box freedom set shown in Figure 7.17.  If θ=90 or 270 degrees for any d, 

the twist line will represent a pure translation with an infinite pitch shown as pure rotational 

hoops in Figure 7.18. 

 

The complete freedom space for Case 2, Type 2 is shown in Figure 7.20.  This figure depicts 

every possible pure rotation, pure translation and screw with a finite, nonzero pitch value for the 

system of two parallel constraints. 

 

The constraint space of this system is not hard to find.  The linear combination of any two 

parallel constraint lines produces a plane containing infinite parallel constraint lines with q 

values equal to zero as shown in Figure 7.21.  Note also that once any two constraints from this 

space have been selected, any other parallel constraint selected from this plane will have no 

effect on the system‘s freedom space and will, therefore, be redundant.  Any constraint selected 

from any other space will change the freedom space completely.  Figure 7.21 is, therefore, the 

system‘s complete constraint space. 

 

Figure 7.20: Freedom space of Case 2, Type 2 
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Figure 7.22 shows how the freedom and constraint spaces of Case 2, Type 2 fit together.  The 

screws with finite, non-zero pitch values are not shown to avoid cluttering the figure. 

 

 

 

 

2 constraints2 constraints

 

Figure 7.21: Constraint space of Case 2, Type 2 

 

Figure 7.22: Freedom space (red) and constraint space (blue) of Case 2, Type 2 together (without the 

screws shown). 
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7.2.3 Case 2, Type 3: 

This section examines the case of two non-redundant constraint lines that are skew.  In order to 

find the freedom space of this system, Blanding‘s Rule of Complementary Patterns will be 

applied to locate all the pure rotational freedom sets. 

 

The first two pure rotational freedom sets that will be considered are parallel planes that contain 

an infinite number of parallel pure rotational freedom lines as shown in Figure 7.23.  Each plane 

contains one of the skew constraint lines.  The freedom lines on each plane will be parallel to the 

skew constraint line that does not lie on the same plane.  Each freedom line in both of these sets 

intersects one of the constraint lines at a point in finite space and intersects the other constraint 

line at a point at infinity. 

 

Another freedom set within the system is a disk of pure rotational freedom lines with a center 

point that is intersected by one of the skew constraint lines and shares a common plane with the 

other skew constraint line as shown in the first picture in Figure 7.24.  Every line within this 

disk will intersect both constraint lines once.  There are other such pure rotational, disk-like 

freedom sets each of which corresponds to a single angle, α, between the plane of the disk and 

the plane show in Figure 7.24.  The second picture in Figure 7.24 shows three such disks of 

freedom lines for three different values of α.  There are an infinite number of such disks for 

every value of α between zero and 180 degrees along the lower constraint line. 

 

Figure 7.23: Two pure rotational planar freedom sets that contain parallel freedom lines (red) for a 

system with two skew constraint lines (blue). 
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An infinite number of such disks exist along both skew constraint lines as shown in Figure 7.25.  

The disks of freedom lines along the upper skew constraint line are unique to a single value of 

the angle, β, between the plane of these disks and the other lower plane shown in Figure 7.25.  

Figure 7.25 technically only shows 6 freedom set disks—three disks along the lower constraint 

line for three different values of α and three other disks along the upper constraint line for three 

different values of β.  Although infinite disks exist within the freedom space of the system, only 

6 disks were shown in the figure to prevent visual clutter.   

 

Note also that every line in any freedom disk on one of the skew constraint lines will share a 

single freedom line with every freedom disk on the other skew constraint line. 

0 < α < 180

1) 2)

0 < α < 1800 < α < 180

1) 2)

 

Figure 7.24: Pure rotational freedom set disks (red) exist for every value of α between zero and 180 

degrees along the lower skew constraint line (blue) 
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Note that Figure 7.23 through Figure 7.25 are drawn for skew constraint lines that have a skew 

angle of 90 degrees.  The tubes containing infinite freedom set disks along each constraint line 

exist independent of the skew angle between the constraint lines.  The only restriction on these 

disks is that the center of the disks must be intersected by one of the constraint lines and the 

other constraint line must lie on the plane of those disks. 

 

A pure rotational hoop also exists with a normal vector that is parallel to the normal vectors of 

the two skew constraint line planes as shown in Figure 7.26.  This hoop is found using the 

approach described in Section 4.4 of Chapter 4. 

0 < α < 180

0 < β < 180

0 < α < 180

0 < β < 1800 < β < 180

 

Figure 7.25: Pure rotational freedom set disks (red) exist for every value of α between zero and 180 

degrees along the lower skew constraint line (blue).  Pure rotational freedom set disks (red) also exist for 

every value of β between zero and 180 degrees along the upper skew constraint line (blue). 
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An infinite number of screws with finite, non-zero pitch values also exist within the system.  The 

location of these twists, however, could not be visually described in any particular freedom space 

that the author could find.  Where these twists are can be understood since they may be found 

using the mathematical approach described in Section 3.4.2 of Chapter 3.  The pure rotational 

freedom sets alone should give the designer a good enough idea of the kinematics of the system 

without showing the screws.  The kinematics of this system is so complicated that a designer 

would be hard pressed to find an application for its motions.  The freedom space of Case 2, Type 

3 without its screws is shown in Figure 7.27. 

 

Figure 7.26: Pure rotational hoop (red) that represents a pure translation in the direction that is normal to 

the two parallel planes that the two skew constraints (blue) lie on. 
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The complete constraint space of this system is essentially only two skew constraint lines shown 

in Figure 7.28.  The linear combination of any two skew wrenches will not yield any other 

wrench solutions with q=0.  Only constraints added along these two skew lines will be 

redundant. 

0 < α < 180

0 < β < 180

0 < α < 180

0 < β < 1800 < β < 180

 

Figure 7.27: Freedom space of Case 2, Type 3 without screws  

1 constraint

h = 0

θ = 0  = 180

1 constraint

1 constraint

h = 0h = 0

θ = 0  = 180θ = 0  = 180

1 constraint  

Figure 7.28: Constraint space of Case 2, Type 3 
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If two parallel planes are found that contain two skew lines as shown in Figure 7.28, the distance 

between these two planes, h, will be the shortest distance segment between the two skew lines.  

This shortest distance line (dashed black line) will be perpendicular to the two planes and will 

intersect the two skew lines as shown in Figure 7.28.  If the skew lines are viewed from ―above‖ 

looking down the axis of the shortest distance line, the angle between the two skew lines will be 

the skew angle, θ. 

 

Note also if h=0 this case and type will become Case 2, Type 1 and the lines will intersect.  If 

θ=0 or 180 degrees this case and type will become Case 2, Type 2 and the lines will be parallel.  

Only for the restrictions on the parameters shown in Figure 7.28 will the lines remain skew. 

 

Figure 7.29 shows how the freedom and constraint spaces of Case 2, Type 3 fit together.  The 

screws with finite, non-zero pitch values are not shown to avoid cluttering the figure. 

0 < α < 180

0 < β < 180
h = 0

0 < α < 180

0 < β < 1800 < β < 180
h = 0h = 0

 

Figure 7.29: Freedom space (red) and constraint space (blue) of Case 2, Type 3 together (without the 

screws shown). 
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7.3 Case 3: 

This section describes the third case of 6.  The third case consists of all systems that contain 

three non-redundant constraints.  To determine the number of types within this case, the question 

must be asked, ―How many different ways may three non-redundant constraints be arranged such 

that different freedom spaces are created?‖  The answer is that only nine different types or nine 

pairs of freedom and constraint spaces exist that may be created by combining three non-

redundant constraints.  This may be proven by drawing every freedom space that results from 

adding a third constraint line to a pair of intersecting constraint lines.  Then draw every freedom 

space that results from adding a third constraint line to a pair of parallel constraint lines.  Finally 

draw every freedom space that results from adding a third constraint line to a pair of skew 

constraint lines.  When this third line is added to a pair of intersecting, parallel and skew lines 

with every combination possible, only nine fundamentally different freedom spaces are created.  

This finding will now be demonstrated. 

 

7.3.1 Third Line Added to Two Intersecting Lines 

This section explores every possible way a third constraint line could be added to a system of 

two intersecting constraint lines.  The fundamentally different freedom and constraint space pairs 

that are produced from this study are numbered as types within the third case and are described 

in detail. 

 

To begin, consider a system where the third line that is added to the two intersecting constraint 

lines lies on the same plane as these two lines.  Only two different freedom spaces are created by 

arranging three lines in this way.  The first constraint line arrangement is shown in Figure 7.30.  

In this figure the third line intersects the two intersecting lines at the same point.  Since this 

system is familiar from Chapter 5, it is known that the third constraint is redundant and that the 

system belongs to Case 2, Type 1. 
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If one considers the third line to be located and oriented anywhere else on the plane of the two 

intersecting constraint lines, a new system is created.  This is shown in Figure 7.31.  It does not 

matter if the third constraint line is parallel to one of the two intersecting constraint lines or not.  

As long as the third constraint line does not pass through the intersection point of the other two 

intersecting constraint lines, a new freedom space is born that will be described later. 

 

No other way exists for adding a third constraint line to the plane of two intersecting constraint 

lines to create a freedom space that is different from the two freedom spaces mentioned above. 

 

The case of a third constraint line added to a plane that is parallel to the plane of the two 

intersecting constraint lines will now be considered.  This case is shown in Figure 7.32.  The 

distance between these planes is arbitrary and the third line could be oriented in any direction 

and could be located anywhere on its plane.  Such a system will always produce the same 

fundamental freedom space. 

2 intersecting lines

3rd line added

2 intersecting lines

3rd line added

 

Figure 7.30: Third constraint line intersects the other two constraint lines at the same point.  All three 

lines lie on the same plane. 

2 intersecting lines

3rd line added

2 intersecting lines

3rd line added

 

Figure 7.31: Third constraint line lies on the same plane as the other two intersecting constraint lines but 

does not pass through their point of intersection. 
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Only two different systems exist when the third line that is added does not lie on a plane parallel 

to or coincident with the plane of the two intersecting constraint lines.  The first of these systems 

occurs when this third line intersects the plane of the two intersecting constraint lines at any 

point that is not their intersection point as shown in Figure 7.33.  It doesn‘t matter if this third 

line intersects one of the two intersecting constraints at a different location than their intersection 

point and it also doesn‘t matter what the intersection angles, Φ and θ, equal.  The freedom space 

produced will always be the same fundamental shape. 

 

The second system that exists when the third constraint line intersects the plane of the two 

intersecting constraint lines occurs when this third line does intersect these two intersecting lines 

2 intersecting lines

3rd line added

2 intersecting lines

3rd line added

 

Figure 7.32: Third constraint line lies on a plane that is parallel to the plane of the other two intersecting 

constraint lines. 

θ

Φ

2 intersecting lines

3rd line added

θ

Φ

θ

Φ

2 intersecting lines

3rd line added

 

Figure 7.33: Third constraint line intersects the plane of the two intersecting constraint lines at a point 

that is not the point of intersection of these two lines. 
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at their point of intersection as shown in Figure 7.34.  The intersection angles Φ1 and Φ2 shown 

in the figure do not matter to the shape of the freedom space of the system. 

 

Since no other ways exist for adding a third constraint line to a pair of intersecting constraint 

lines, the four types or pairs of different freedom and constraint spaces that are produced from 

the constraint arrangements discussed above will now be described. 

 

7.3.1.1 Case 3, Type 1: 

This section describes the freedom and constraint space pair created using the three non-

redundant constraints shown in Figure 7.31.  The constraint space of this type is shown in 

Figure 7.35.  It is a single planar constraint set that represents any constraint line (blue) that lies 

on that plane.  Once three non-redundant constraint lines have been selected that don‘t all 

intersect at the same point (including at infinity), any other constraint selected from this plane 

will be redundant. 

Φ1

Φ2

2 intersecting lines

3rd line added

Φ1

Φ2

Φ1

Φ2

2 intersecting lines

3rd line added

 

Figure 7.34: Third constraint line intersects the plane of the two intersecting constraint lines at their 

intersection point. 
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The freedom space of this system is found using the Rule of Complementary Patterns.  It consists 

of a planar pure rotational freedom set (red) that contains every freedom line on its plane and a 

single pure rotational hoop (red) with a normal vector that points in the same direction as the 

normal vector of the planar freedom set as shown in Figure 7.36. 

 

No screws with finite, non-zero pitch values exist in this system.  Figure 7.36 is, therefore, the 

complete freedom space and visual representation of the kinematics for this particular system of 

three non-redundant constraints.  One can mathematically prove that no screws exist within this 

system by using the mathematical approach described in Section 3.4.2 of Chapter 3.  Once the 

complete freedom space has been expressed as a resultant twist that is a linear combination of 

three independent twists, one finds that applying Equation (3.4) to this resultant twist will 

always produce twists with zero pitch values.  Thus, the freedom space will always contain pure 

rotations. 

Any 3 constraints that 

don’t intersect at the 

same point (including 

at infinity)

Any 3 constraints that 

don’t intersect at the 

same point (including 

at infinity)

 

Figure 7.35: Constraint space of Case 3, Type 1 

 

Figure 7.36: Freedom space of Case 3, Type 1 
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Figure 7.37 shows how the freedom and constraint spaces of Case 3, Type 1 fit together. 

 

7.3.1.2 Case 3, Type 2: 

This section describes the freedom and constraint space pair created using the three non-

redundant constraints shown in Figure 7.32.  Blanding‘s Rule of Complementary Patterns may 

be applied to these constraint lines to determine the pure rotational freedom lines that form the 

system‘s freedom space.  Only the pure rotational freedom sets within the freedom space are 

shown in Figure 7.38.  This freedom space consists of three pure rotational freedom sets.  One 

set is planar and contains every freedom line on that plane that is parallel to the third constraint 

line that lies on the plane parallel to the plane of the two intersecting constraint lines shown in 

Figure 7.32.  These parallel freedom lines lie on the plane of these two intersecting constraint 

lines.  The other freedom set is a disk of pure rotational freedom lines whose center point is 

coincident with the point of intersection of the two intersecting constraint lines.  The third 

constraint line in Figure 7.32 lies on the plane of this disk of freedom lines.  The angle, θ, 

between these two planar freedom sets shown in Figure 7.38 depends on which third constraint 

line is chosen on the plane parallel to the plane of the other two intersecting constraint lines.  A 

pure rotational hoop whose normal vector points in the direction of the normal vector of the 

planar freedom set of parallel freedom lines also exists and is shown in Figure 7.38. 

 

Figure 7.37: Freedom space (red) and constraint space (blue) of Case 3, Type 1 together. 
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Screws also exist within the freedom space of this system.  This system‘s constraint space will, 

however, be considered before returning to the discussion of these screws. 

 

If one finds every line that intersects every pure rotational freedom line in the freedom sets 

shown in Figure 7.38, one finds the system‘s complete constraint space.  This constraint space is 

shown in Figure 7.39.  It contains two constraint sets.  One of these sets is planar and contains 

all constraint lines that lie on a plane and are parallel to the parallel freedom lines in the planar 

freedom set.  This constraint set shares the same plane as the disk of freedom lines shown in 

Figure 7.38.  The constraint space also contains a disk of constraint lines with a center point that 

is coincident with the center point of the disk of freedom lines in the freedom space.  This disk 

constraint set also shares the same plane as the planar freedom set that contains parallel freedom 

lines. 

0  < θ < 1800  < θ < 180

 

Figure 7.38: Pure rotational freedom sets within the freedom space of Case 3, Type 2. 
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Note also that each constraint set is labeled with proper instructions for guiding the designer in 

selecting the three non-redundant constraints for the system.  The designer could not just select 

any three constraints from the constraint space and expect them to be non-redundant.  He/she 

would have to select either two from the disk and one from the plane of parallel lines that‘s not 

on the line of intersection of the two planar constraint sets, or he/she would have to select two 

from the plane of parallel lines and one from the disk that‘s not on the line of intersection of the 

two planar constraint sets for the three constraints to be non-redundant.  Once three non-

redundant constraints have been selected using these instructions, any other constraint selected 

from the space will be redundant.  Also note that if the designer decides to select two constraints 

from the disk and one constraint from the plane of parallel lines, he/she will recreate Figure 7.32 

from which this type was developed in the first place. 

 

Returning again to the system‘s freedom space, its screws will now be found using the constraint 

space as a guide.  If the angle, θ, between the two planar constraint sets is 90 degrees, the screws 

1 constraint from the disk 

that’s not on the dashed line 

and any 2 constraints from 

the plane of parallel lines, or 

1 constraint from the plane of 

parallel lines that’s not on the 

dashed line and any 2 

constraints  from the disk 

0  < θ < 180

1 constraint from the disk 

that’s not on the dashed line 

and any 2 constraints from 

the plane of parallel lines, or 

1 constraint from the plane of 

parallel lines that’s not on the 

dashed line and any 2 

constraints  from the disk 

0  < θ < 180

 

Figure 7.39: Constraint space of Case 3, Type 2. 
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are described in Figure 7.40.  The allowable screws are twist lines that lie on planes that are 

parallel to the vertical plane of parallel constraint lines and intersect the constraint line that is 

perpendicular to this plane and lies within the disk of constraint lines.  This line is shown as a 

dashed blue line in the figure.  The shortest distance between the allowable twist line and the 

vertical plane of parallel constraint lines is L.  The angle between the twist line and the horizontal 

plane of the disk constraint set is α.  Restrictions on these parameters are shown in the figure to 

ensure that the twist lines will be screws with pitch values that are finite and non-zero. 

 

These screws were found by remembering the screws that complement a disk of constraint lines 

from Figure 7.13 and remembering the screws that complement a plane of parallel constraint 

lines from Figure 7.19.  The screws shown in Figure 7.40 complement both the constraint lines 

in the disk and the parallel constraint lines on the plane with a pitch value given by Equation 

(7.1). 

 

Note that when L=0, the twist line will represent the red disk of pure rotational freedom lines 

shown in Figure 7.38.  When α=0 or 180 degrees for any value of L, the twist line will represent 

θ=90
α = c*90 

where c is 

any integer

L = 0
p = L*tan α

θ=90
α = c*90 

where c is 

any integer

L = 0
p = L*tan α

θ=90
α = c*90 

where c is 

any integer

L = 0
p = L*tan α

 

Figure 7.40: Screws (green) with finite, non-zero pitch values for Case 3, Type 2 when θ=90 degrees. 
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the red plane of parallel pure rotational freedom lines shown in Figure 7.38.  And when α=90 

degrees, the twist line will represent a pure translation pointing in the direction of the normal 

vector of the pure rotational hoop also shown in the same figure. 

 

Unfortunately, when the angle between the constraint sets, θ, is not 90 degrees, the screws are 

not easily found and visually described.  One can, however, have a good idea of where they are.  

The allowable screws will always intersect and be orthogonal to one of the lines in the disk of 

constraint lines and they will always lie on a plane that is parallel to the plane of parallel 

constraint lines.  They may always be found using the mathematical approach described in 

Section 3.4.2 of Chapter 3. 

 

Now that every pure rotation, pure translation and screw has been located for this system, the 

complete freedom space of this type will now be given.  This freedom space is shown in Figure 

7.41. 

 

Figure 7.42 shows how the freedom and constraint spaces of Case 3, Type 2 fit together.  The 

screws with finite, non-zero pitch values are not shown to avoid cluttering the figure. 

 

Figure 7.41: Freedom space of Case 3, Type 2 
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Note also that if θ=0 or 180 degrees, this case and type becomes Case 3, Type 1. 

 

7.3.1.3 Case 3, Type 3: 

This section describes the freedom and constraint space pair created using the three non-

redundant constraints shown in Figure 7.33.  The pure rotational freedom sets of this system 

were determined in Section 2.3 of Chapter 2 and are shown again here in Figure 7.43.  These 

two pure rotational freedom sets consist of disks that contain pure rotational freedom lines.  

Their center points are separated by a distance of d and the angle between the planes of the two 

disks is θ. 

0  < θ < 1800  < θ < 180

 

Figure 7.42: Freedom space (red) and constraint space (blue) of Case 3, Type 2 together (without the 

screws shown). 
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The freedom space of this system also contains screws with finite, non-zero pitch values.  These 

screw lines are, however, not easily visually expressed.  They may be mathematically found 

using the method described in Section 3.4.2 of Chapter 3, but they will not be shown here for 

the sake of not cluttering the figure. 

 

The complete constraint space of this system may be found by locating every line that intersects 

every freedom line inside the two pure rotational disks at least once.  This procedure was done in 

Section 5.2.3 of Chapter 5.  The constraint space of this system is shown again here in Figure 

7.44.  This space also contains two disk sets.  Both center points of these disk constraint sets are 

coincident with the center points of the two disk freedom sets.  The freedom and constraint disks 

that share center points, however, do not share common planes.  The freedom and constraint 

disks that don‘t share common center points, however, do share common planes. 

0  < θ < 180

d = 0

0  < θ < 1800  < θ < 180

d = 0d = 0

 

Figure 7.43: Freedom space of Case 3, Type 3 without the screws. 
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Again note the instructions to the designer for selecting three non-redundant constraints.  In 

order to select three appropriate non-redundant constraints, any two constraints may be selected 

from one of the disks in the constraint space and then only one constraint may be selected from 

the other disk that does not lie on the intersection line of the two planes. 

 

Figure 7.45 shows how the freedom and constraint spaces of Case 3, Type 3 fit together.  The 

screws with finite, non-zero pitch values are not shown to avoid cluttering the figure. 

0  < θ < 180

d = 0

2 constraints from 

either disk and 1 

constraint from the 

other disk (that isn’t 

on the dashed line 

of intersection of 

the two planes)

0  < θ < 1800  < θ < 180

d = 0d = 0

2 constraints from 

either disk and 1 

constraint from the 

other disk (that isn’t 

on the dashed line 

of intersection of 

the two planes)

 

Figure 7.44: Constraint space of Case 3, Type 3. 
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Note that if θ=0 or 180 degrees that this case and type becomes Case 3, Type 1.  Also, if d=0, 

this case and type becomes Case 3, Type 4, which will now be considered. 

 

7.3.1.4 Case 3, Type 4: 

This section describes the freedom and constraint space pair created using the three non-

redundant constraints shown in Figure 7.34.  The freedom space of this system is found by using 

the Rule of Complementary Patterns.  The only allowable twist lines for this system are the pure 

rotational freedom lines that intersect all three non-redundant constraint lines at their point of 

intersection.  These lines create the spherical freedom set shown in Figure 7.46.  The pure 

rotational freedom set shown in this figure is the complete freedom space of the system since no 

pure translations or screws exist.  One can mathematically prove that there are no screws in the 

system by using the mathematical approach described in Section 3.4.2 of Chapter 3.  Once the 

0  < θ < 180

d = 0

0  < θ < 1800  < θ < 180

d = 0d = 0

 

Figure 7.45: Freedom space (red) and constraint space (blue) of Case 3, Type 3 together (without the 

screws shown). 
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complete freedom space has been expressed as a linear combination of three independent twists, 

Equation (3.4) could be applied to the resultant twist of the system to show that all twists in the 

freedom space will have zero pitch values. 

 

The complete constraint space of this system is a similar spherical set that contains every 

constraint line that passes through the same center point as shown in Figure 7.47.  The designer 

is instructed to select three constraints from the sphere that don‘t all lie on the same plane in 

order to appropriately select three non-redundant constraints.  If the designer were to select three 

constraints from the sphere that do lie on the same plane, a disk of constraints would be selected 

and the system would become Case 2, Type 1. 

 

Figure 7.46: Freedom space of Case 3, Type 4. 

3 constraints that don’t lie 

on the same plane

3 constraints that don’t lie 

on the same plane

 

Figure 7.47: Constraint space of Case 3, Type 4. 
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Figure 7.48 shows how the freedom and constraint spaces of Case 3, Type 4 fit together. 

 

7.3.2 Third Line Added to Two Parallel Lines 

This section explores every possible way a third constraint line could be added to a system of 

two parallel constraint lines.  The fundamentally different freedom and constraint space pairs that 

are produced from this study are numbered as types within the third case and are described in 

detail. 

 

To begin, consider a system where the third line that is added to the two parallel constraint lines 

lies on the same plane as these two lines.  Only two such line arrangements exist that produce 

different freedom spaces.  The first is shown in Figure 7.49.  In this figure the third line is 

parallel to the two parallel lines.  This third constraint is redundant.  It, therefore, belongs to Case 

2, Type 2. 

 

Figure 7.48: Freedom space (red) and constraint space (blue) of Case 3, Type 4 together.  
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The second way a third constraint line could be added to the plane of the two parallel constraint 

lines is to make sure this third line is not parallel to the other two as shown in Figure 7.50.  Note, 

however, that this system belongs to the constraint space of Case 3, Type 1. 

 

Consider now a system where the third constraint line that is added lies on a plane that is parallel 

to the plane of the two parallel constraint lines.  Only two such line arrangements exist that 

produce different freedom spaces.  The first is shown in Figure 7.51.  In this figure the third line 

is parallel to the two parallel lines.  This constraint layout will be shown to produce a 

fundamentally new freedom and constraint space pair that will be described later as Case 3, Type 

5. 

2 parallel lines

3rd line added

2 parallel lines

3rd line added

 

Figure 7.49: Third constraint line is parallel to the two parallel constraint lines and they all lie on the 

same plane. 

2 parallel lines

3rd line added

2 parallel lines

3rd line added

 

Figure 7.50: Third constraint line is not parallel to the two parallel constraint lines but they all lie on the 

same plane. 
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The second way a third constraint line could be added to a plane that is parallel to the plane of 

the two parallel constraint lines is to make sure this third line is not parallel to the other two lines 

as shown in Figure 7.52.  This constraint layout will be shown to also produce a fundamentally 

new freedom and constraint space pair that will be described later as Case 3, Type 6. 

 

Note also that it does not matter whether the plane of this third constraint line is ―above‖ or 

―below‖ the plane of two parallel constraint lines.  One could view any of these lines from any 

perspective and they would result in the same system with the same kinematics as long as the 

2 parallel lines

3rd line added

2 parallel lines

3rd line added

 

Figure 7.51: Third constraint line is parallel to the two parallel constraint lines and it lies on a plane that 

is parallel to the plane of the two parallel constraint lines 

2 parallel lines

3rd line added

2 parallel lines

3rd line added
 

Figure 7.52: Third constraint line is not parallel to the two parallel constraint lines but it lies on a plane 

that is parallel to the plane of the two parallel constraint lines 
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constraint lines maintain the same relationship with respect to each other.  For instance, it may 

appear that the third line in Figure 7.52 is on a plane below the plane of two parallel lines, but if 

one imagines the figure flipped upside down, the third constraint line would be on a plane above 

the two parallel constraint lines.  Nothing about the system itself has changed, just the 

perspective that it is viewed from. 

 

Consider now a system where the third constraint line that is added intersects the plane of the 

two parallel constraint lines at a single point as shown in Figure 7.53.  If this line intersects one 

of the two parallel lines, it will belong to the system of Case 3, Type 2 already considered in the 

previous section on intersecting lines.  If the third line doesn‘t intersect one of the two parallel 

lines, the system will still belong to Case 3, Type 2.  The two parallel constraint lines are simply 

two lines from the plane of parallel constraint lines shown in Figure 7.39 and the third line is 

one of the constraint lines from the disk that is not on the intersection line of the two planar 

constraint sets. 

 

Since no other ways exist for adding a third constraint line to a pair of parallel constraint lines, 

the two new types or pairs of freedom and constraint spaces that are produced in the third case 

from the different combinations of three non-redundant constraints where at least two of them 

are parallel are ready to be described. 

 

 

θ

Φ

2 parallel lines

3rd line added θ

Φ

2 parallel lines

3rd line added

 

Figure 7.53: Third constraint line intersects the plane of the two parallel constraint lines at a single point 
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7.3.2.1 Case 3, Type 5: 

This section describes the freedom and constraint space pair created using the three non-

redundant constraints shown in Figure 7.51.  The constraint space is shown in Figure 7.54 and 

consists of a single constraint set represented by an infinitely large box that contains all parallel 

constraint lines in three-space that point in a particular direction. 

 

Note also the instruction to the designer to select three constraints that don‘t all lie on the same 

plane.  If the designer were to choose three constraints from the same plane, only two of these 

would be non-redundant and this case and type would become Case 2, Type 2.  Once three 

constraints have, however, been selected that don‘t all lie on the same plane, any other constraint 

selected from the constraint space will be redundant. 

 

The freedom space of this system is found by locating all the pure rotational freedom lines that 

intersect every constraint line at least once.  This freedom space is shown in Figure 7.55.  It 

consists of a box-like freedom set that contains every parallel line in three-space that is parallel 

to the constraint lines in the constraint space.  The freedom space also consists of pure rotational 

hoops that all intersect these parallel lines at a single point at infinity.  These hoops represent a 

disk of pure translations that is perpendicular to the parallel lines in the freedom and constraint 

spaces. 

3 constraints that 

don’t lie on the 

same plane

3 constraints that 

don’t lie on the 

same plane

 

Figure 7.54: Constraint space of Case 3, Type 5 
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The pure rotational freedom sets shown in this figure represent the complete freedom space for 

the system since this system contains no screws.  One can mathematically prove that there are no 

screws in the system by using the mathematical approach described in Section 3.4.2 of Chapter 

3. 

 

Figure 7.56 shows how the freedom and constraint spaces of Case 3, Type 5 fit together. 

 

Figure 7.55: Freedom space of Case 3, Type 5 
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7.3.2.2 Case 3, Type 6: 

This section describes the freedom and constraint space pair created using the three non-

redundant constraints shown in Figure 7.52.  The pure rotational freedom sets created by 

locating every freedom line that intersects the three non-redundant constraint lines at least once 

are shown in Figure 7.57.  Two of these sets are planar sets.  The top planar set contains every 

freedom line that is parallel to the third constraint line on the bottom plane shown in Figure 

7.52.  The two parallel constraint lines also shown in that figure share the same plane as this top 

planar set.  The bottom planar set contains every freedom line that is parallel to the two parallel 

constraint lines from Figure 7.52.  The third constraint line shares the same plane with this 

bottom planar set.  A pure rotational hoop also exists with a normal vector that points in the same 

direction as the normal vectors of the two planar sets.  This hoop represents a pure translation in 

that direction.  The distance between the planar sets is d and the skew angle between the parallel 

lines on the top set and the parallel lines on the bottom set is θ. 

 

Figure 7.56: Freedom space (red) and constraint space (blue) of Case 3, Type 5 together. 
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The screws of this system are shown in Figure 7.58.  Every allowable screw will lie on a plane 

that is parallel to or coincident with the two planar freedom sets of parallel freedom lines.  If the 

skew angle, θ, between the pure rotational freedom lines is 90 degrees, no screw will lay on 

either of the planes of the planar freedom sets and every screw will be sandwiched on planes 

between these sets.  If the skew angle of the pure rotational freedom lines is not 90 degrees, as is 

the case in Figure 7.58, parallel groups of screws will lie on the same planes as these pure 

rotational freedom lines.  Planar sets of parallel screws will also lie above and below the planar 

pure rotational freedom sets.  The skew angle between these screws will be 90 degrees.  Every 

existing screw will lie on a plane sandwiched between these top and bottom planar screw sets. 

0  < θ < 180 

d = 0

0  < θ < 180 0  < θ < 180 

d = 0d = 0

 

Figure 7.57: Pure rotational freedom sets of Case 3, Type 6 
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The top and bottom planar sets will only contain one group of parallel lines.  The parallel lines 

on these planes will have a skew angle of 90 degrees.  An infinite number of planes will be 

sandwiched between these top and bottom planes.  These planes will all contain two groups of 

parallel lines.  All twists within a single group of parallel lines will have the same pitch values 

but the two groups of parallel twists on each plane will always have different pitch values. 

 

Another way of visualizing this freedom space is to view it as a group of infinite and identical 

cylindroids of the same height arranged side by side with principal generators that all lay on the 

same plane but all intersect at different locations on that plane.  Each of these cylindroids will 

contain exactly two pure rotational freedom lines that are skew with respect to each other.  The 

rest of the lines in the cylindroid will be screws with different non-zero but finite pitch values.  

The extreme generators of the cylindroids create the top and bottom planar sets and their skew 

pure rotational freedom lines create the two pure rotational planar freedom sets of parallel lines.  

The mathematical relationship between the two groups of parallel lines on each plane with 

respect to their position between the top and bottom planes may be determined using the 

equation of a cylindroid given in Chapter 6 as Equation (6.5).  The reason why this freedom 

space is an infinite number of cylindroids each containing two skew pure rotational freedom 

lines is given in Chapter 8. 

 

The complete freedom space of Case 3, Type 6 with all of its pure rotations, translations and 

screws is shown in Figure 7.59. 

Figure 7.58: Screws (green) from Case 3, Type 6 depicted with the planar freedom sets (red).  The right 

side of the figure shows the planes separated to help the reader better see the lines on each plane. 

θ

d

θ

d
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The complete constraint space of this case and type may be found by locating every line that 

intersects every pure rotational freedom line shown in Figure 7.57.  This constraint space is 

shown in Figure 7.60.  It consists of two planar constraint sets that contain a single group of 

parallel constraint lines on each plane.  These planar constraint sets share the same planes as the 

two planar pure rotational freedom sets.  The constraint lines on the top plane are parallel with 

the freedom lines on the bottom plane.  The constraint lines on the bottom plane are parallel with 

the freedom lines on the top plane. 

 

The designer is provided with instructions for appropriately selecting three non-redundant 

constraints from the constraint space.  Once one constraint has been selected from one of the 

planar constraint sets and two constraints have been selected from the other planar constraint set, 

any other constraint selected from this space will be redundant.  Note also that if the designer 

selected two constraints from the top plane and one constraint from the bottom plane, the 

constraint arrangement is the same as that shown in Figure 7.52. 

 

Note also that if d=0, this case and type becomes Case 3, Type 1.  If θ=0 or 180 degrees, this 

case and type becomes Case 3, Type 5.  If d=0 and θ=0 or 180 degrees simultaneously, this case 

and type becomes Case 2, Type 2. 

 

Figure 7.59: Freedom space of Case 3, Type 6 

1 constraint from one plane 

and 2 constraints from the 

other plane

d = 0

0  < θ < 180 

1 constraint from one plane 

and 2 constraints from the 

other plane
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0  < θ < 180 0  < θ < 180  

Figure 7.60: Constraint space of Case 3, Type 6 
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Figure 7.61 shows how the freedom and constraint spaces of Case 3, Type 6 fit together.  The 

screws with finite, non-zero pitch values are not shown to avoid cluttering the figure. 

 

7.3.3 Third Line Added to Two Skew Lines 

This section explores every possible way a third constraint line could be added to a system of 

two skew constraint lines.  The fundamentally different freedom and constraint space pairs that 

are produced from this study are numbered as types within the third case and are described in 

detail in this section. 

 

To begin, consider systems where the third line that is added to the two skew constraint lines is 

not parallel to and does not intersect either of these lines such that new freedom and constraint 

space pairs are created.  Only two such line arrangements exist.  The first consists of a third 

constraint line added to a plane that is parallel to the two parallel planes of the two skew 

constraint lines where the third constraint line is also skew to both of these skew lines as shown 

in Figure 7.62.  The second line arrangement consists of a third constraint line added such that it 

intersects the two parallel planes of the two skew constraint lines without intersecting either of 

the lines themselves as shown in Figure 7.63.  These are the only two fundamentally different 

ways three skew lines may be combined.  This statement, although initially non-intuitive, will 

become obvious by the completion of this chapter.   

d

θ

d

θ

 

Figure 7.61: Freedom space (red) and constraint space (blue) of Case 3, Type 6 together (without the 

screws shown). 
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Note if a third constraint line had been added on one of the two parallel planes of the two skew 

constraint lines, this third line would intersect or be parallel to the skew constraint line with 

which it shares a plane.  The type of such a system would, therefore, have already been 

considered in a previous section.  Or if the third constraint line had been added on a plane 

parallel to the two parallel planes of the two skew constraint lines, but the third line was parallel 

to one of these skew lines, its type would also have already been considered in a previous 

section.  It doesn‘t matter if the plane that the third line is added on lies above, between, or below 

the two parallel planes of the two skew constraint lines.  Any three skew lines similar to those 

shown in Figure 7.62 will belong to a single type within Case 3. 

2 skew lines

3rd line added

2 skew lines

3rd line added

 

Figure 7.62: Third constraint line added to a plane that is parallel to the two parallel planes of the two 

skew constraint lines where the third constraint line is not parallel to either of them. 
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Note if the third constraint line that intersects the two parallel planes of the two skew constraint 

lines intersects one or both of these lines, its type would have already been considered in the 

section on intersecting lines. 

 

Now that the two different ways three skew constraint lines may be arranged have been 

identified, each of these ways will be studied to determine how many different types may be 

identified and described within each. 

 

7.3.3.1 Three Skew Lines on Three Parallel Planes 

This section will examine the system of three skew lines on three parallel planes shown in 

Figure 7.62.  After studying this system, Case 3, Type 7 will be identified and mathematically 

described. 

 

To begin the study, a particular arrangement of these three skew lines will be considered where 

the third skew line is intersected by the shortest distance line of the other two skew lines as 

shown in Figure 7.64.  Recall that the shortest distance line of two skew lines is the line 

perpendicular to the two parallel planes of the two skew lines that also intersects both of these 

Φ1

Φ2

2 skew lines

3rd line added

Φ1

Φ2

2 skew lines

3rd line added

 

Figure 7.63: Third constraint line added such that it intersects the two planes of the two skew constraint 

lines but does not intersect either of the skew lines themselves. 
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skew lines.  It is called the shortest distance line because the line segment created between the 

two intersection points of both skew lines and this line will be the shortest line segment possible 

that intersects both skew lines.  For such a system, if one were to look down the shortest distance 

line from above, it would appear like the three skew constraint lines intersect at the same point 

like a disk as shown in Figure 7.64. 

 

Applying Blanding‘s Rule of Complementary Patterns to finding the pure rotational freedom 

lines that intersect all three constraint lines of this system is not easily done by inspection.  If the 

constraint line on the middle plane is treated as a series of infinite points in the midst of two 

other skew constraint lines on the top and bottom parallel planes, Appendix C can be applied to 

finding each freedom line that corresponds to each point along the middle constraint line that 

also intersects both of the two skew constraint lines.  Figure 7.65 shows three such freedom lines 

that correspond to three points along the dotted middle skew line.  Using Appendix C to 

determine the location and orientation vectors of these new freedom lines, one also learns that 

each of these freedom lines is skew with respect to each other. 

2 skew lines

3rd line added
Looking down the shortest 

distance line from above:

2 skew lines

3rd line added

2 skew lines

3rd line added
Looking down the shortest 

distance line from above:

2 skew lines

3rd line added

 

Figure 7.64: Third constraint line added to a plane parallel to the plane of the two skew constraint lines 

that is intersected by the shortest distance line (dashed black) of these two skew constraint lines. 
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After drawing a couple more of these freedom lines, a pattern becomes apparent.  A freedom set 

is formed that consists of a ruled surface of freedom lines that rotate as they translate along an 

axis that is perpendicular to these lines.  This freedom set is shown in Figure 7.66.  The author 

calls this freedom set a ribbon set because it looks like a long ribbon that stretches out to infinity 

with a single 180 degree twist at its center.  This twist occurs because the lines on the ribbon‘s 

surface almost rotate a full 180 degrees from one end of the ribbon to the other.  The twist at its 

center is very much exaggerated in Figure 7.66.  In actuality, this twist happens quite rapidly at 

the ribbon‘s center and most of the rest of the ribbon consists of lines that are almost parallel and 

are asymptotically becoming more parallel as the ribbon extends to infinity at both of its ends. 

 

Figure 7.65: Three freedom lines (red) found by choosing three random points along the middle 

constraint line (dotted blue) and applying Appendix C to each of these points and to the other two skew 

constraint lines (blue). 
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It was briefly mentioned that the freedom lines within this ribbon space are perpendicular to the 

axis that they translate on.  For this reason, such a ribbon will be called an orthogonal ribbon.  

Every ribbon freedom set that is created from three skew non-redundant constraints like those 

shown in Figure 7.64 will be orthogonal ribbons.  If the third constraint line in that figure did not 

intersect the shortest distance line of the other two skew constraint lines, the resultant ribbon 

freedom set would not be orthogonal.  Non-orthogonal ribbons will be considered later on in this 

section. 

 

The ribbon freedom set shown in Figure 7.66 is also a left-handed ribbon.  It is called a left-

handed ribbon because the fingers of a left hand determine the direction the lines on the ribbon 

rotate as they translate if the left hand‘s thumb is pointing along the ribbon‘s axis in the direction 

of translation.  Note also that it does not matter which direction along the ribbon‘s axis the thumb 

is pointed as long as it is the left hand‘s thumb that is doing the pointing. 

 

∞

Left-handed

Ribbon’s Axis∞

Left-handed

Ribbon’s Axis

 

Figure 7.66: Left-handed, orthogonal, ribbon freedom set of pure rotational freedom lines (red) that 

rotate as they translate along an axis (dotted black line).  The rate that the lines rotate as they translate has 

not accurately been drawn to emphasize the ribbon surface‘s twist at its center. 
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Before completing the study of this system‘s freedom space, its constraint space will be 

considered briefly.  One can find this space by apply the Rule of Complementary Patterns to the 

three skew pure rotational freedom lines shown in Figure 7.65.  If the middle skew freedom line 

in this figure is treated as an infinite series of points and the other two skew freedom lines also 

shown in the figure are considered, the principles from Appendix C can be applied for finding 

every constraint line that intersects all three skew freedom lines simultaneously.  In this way, one 

can mathematically determine the system‘s complete constraint space.  The constraint lines in the 

constraint space will not only intersect the three pure rotational freedom lines shown in Figure 

7.65, they will also intersect every freedom line in the entire ribbon freedom set thus satisfying 

the Rule of Complementary Patterns. 

 

The constraint set that is formed by finding these constraint lines is shown in Figure 7.67.  This 

constraint set is also an orthogonal ribbon space that extends infinitely far in both directions and 

contains a 180 degree twist at its center.  The only difference between this ribbon constraint set 

and its complementary ribbon freedom set, other than its location in space, is that it is a right-

handed ribbon instead of a left-handed ribbon.  That is the fingers of a right hand will determine 

the direction the constraint lines rotate as they translate along the ribbon‘s axis if the right hand‘s 

thumb is pointing along this axis. 

∞

Ribbon’s Axis

Right-handed

∞

Ribbon’s Axis

Right-handed
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This space includes the three skew constraint lines from Figure 7.64 on its surface.  Any three 

constraint lines chosen from this space will produce the same ribbon freedom set as the ribbon 

freedom set created by the original three skew constraint lines from Figure 7.64.  Any other 

constraint selected from this space once the three non-redundant constraints have been selected 

will be redundant and will have no effect on the freedom space of the system.  One can correctly 

deduce, therefore, that every line in any ribbon space is a linear combination of three other 

independent twists or wrenches in that space where every twist or wrench in that space is a pure 

rotation (p=0) or an ideal constraint (q=0). 

 

In order to better visualize how these ribbon freedom and constraint sets fit together, a program 

was written using MATLAB that draws some of the actual line segments within each of these 

spaces and generates them using three initial skew constraint lines that satisfy the conditions of 

the skew lines shown in Figure 7.64.  The code is given in Appendix D and an example picture 

is shown here in Figure 7.68. 

Figure 7.67: Right-handed orthogonal ribbon constraint set of constraint lines (blue) that rotate as they 

translate along an axis (dotted black line).  The rate that the lines rotate as they translate has not 

accurately been drawn to emphasize the ribbon surface‘s twist at its center. 
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The relationship between ribbon freedom sets and their complementary ribbon constraint sets 

will now be considered.  From the previous example, it should not come as a surprise that any 

left-handed ribbon freedom set will have a complementary right-handed ribbon constraint set.  It 

should, therefore, also not come as a surprise that any right-handed ribbon freedom set will have 

a complementary left-handed ribbon constraint set.   

 

The rate that the lines rotate as they translate within the ribbon freedom and constraint sets will 

also be of the same magnitude at corresponding locations along each ribbons‘ axis when these 

spaces are complementary.  To demonstrate this fact, one first must define a ribbon‘s pitch.  The 

pitch of a ribbon is defined as the rate the lines within the ribbon translate as they rotate.  In other 

words, it is the change in the position of the lines within the ribbon along the ribbon‘s axis 

 

Figure 7.68: Example of a left-handed, orthogonal, ribbon freedom set (red) with its complementary 

right-handed, orthogonal, ribbon constraint set (blue) 
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divided by the change of the skew angle between these lines.  This is shown in Figure 7.69 with 

an orthogonal, left-handed, ribbon constraint set. 

 

Note from Figure 7.69 that every plane that contains a constraint line is orthogonal to the axis of 

the ribbon (which is why the ribbon is called orthogonal).  The center point of the ribbon lies on 

the intersection of the ribbon‘s axis and the dashed blue constraint line shown in the figure.  This 

central constraint line is asymptotically orthogonal to the constraint lines that are infinitely far 

away from the center point at both ends of the ribbon. 

 

This ribbon constraint set‘s complementary orthogonal right-handed ribbon freedom set is shown 

in Figure 7.70. 
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Figure 7.69: Definition of a ribbon‘s pitch for an orthogonal  left-handed ribbon constraint set  
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Note again that each plane that contains a pure rotational freedom line is orthogonal to the axis 

of this ribbon.  The central freedom line (dashed red) is also asymptotically orthogonal to the two 

freedom lines infinitely far away on both ends of the ribbon. 

 

Figure 7.71 shows how these two complementary ribbons fit together. 
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Figure 7.70: Complementary orthogonal right-handed ribbon freedom set  
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From Figure 7.71 one learns that the axes of orthogonal complementary ribbons are themselves 

orthogonal and intersect at the central point of both ribbons.  The central constraint line (dashed 

blue) from the constraint ribbon set is coincident with the axis of the freedom ribbon set.  And 

the central freedom line (dashed red) from the freedom ribbon set is coincident with the axis of 

the constraint ribbon set.  Both freedom lines at the end of the freedom ribbon set and both 

constraint lines at the end of the constraint ribbon set are all asymptotically parallel and 

orthogonal to the two ribbons‘ axes. 

 

Appendix E proves that both ribbons‘ pitch values are equivalent in magnitude but have 

opposite signs for corresponding locations along the two complementary ribbons‘ axes.  It also 

shows that the double derivative of each ribbon‘s pitch with respect to position along the 

Axes of RibbonsAxes of Ribbons

 

Figure 7.71: How complementary orthogonal ribbons fit together  



 163 

ribbon‘s axis results in a constant that is equal in magnitude but opposite in sign for 

complementary ribbons.  This constant is a significant number since it contains all the 

information necessary for describing and characterizing an orthogonal ribbon.  If a ribbon is 

right-handed, this constant will be a positive value.  If a ribbon is left-handed, this constant will 

be a negative value. 

 

An orthogonal constraint ribbon space may also be described by a single characteristic screw that 

is orthogonal to and intersects the ribbon‘s central constraint line as well as its axis as shown in 

Figure 7.72.  Every constraint line on the ribbon‘s surface satisfies this characteristic screw 

according to Equation (3.13).  Note that every right-handed ribbon will be characterized by a 

screw with a negative pitch value and that every left-handed ribbon will be characterized by a 

screw with a positive pitch value. 

∞
∞

d
θ pp = d*tan θ

∞
∞

d
θ pp = d*tan θ

 

Figure 7.72: Characteristic screw (green) that defines an orthogonal constraint ribbon space made of 

constraint lines (blue) 
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Since the pitch, p, of this characteristic screw defines the rate that the constraint lines rotate as 

they translate along the ribbon‘s axis in the same way that the double derivative constant, K, of 

the ribbon‘s pitch characterizes the ribbon, one would expect these two characteristic values to 

be related.  This relationship is given as 

 

 

 

Equation (7.2) is proven in Appendix F.  Both of these values, therefore, fully define any pair 

of complementary orthogonal ribbon spaces. 

 

An important observation states that: 

The surfaces that the lines within complementary freedom and constraint ribbon sets lie on 

are hyperbolic paraboloids. 

This should not come as a surprise in light of the fact that hyperbolic paraboloids are doubly 

ruled surfaces as discussed in Chapter 6.  From Blanding‘s Rule of Complementary Patterns one 

should expect doubly ruled surfaces to be the shapes that contain the lines within complementary 

freedom and constraint sets where one of the two rulings is a group of constraint lines and the 

other ruling is a group of pure rotational freedom lines.  Every point on such surfaces will be 

intersected by a single freedom line and a single constraint line that both lay entirely on the 

surface.  Every freedom line will intersect every constraint line and every constraint line will 

intersect every freedom line on the same surface. 

 

An example of a pair of complementary ribbon sets are shown on the surface of a hyperbolic 

paraboloid in Figure 7.73.  The characteristic screw of these ribbons is a line along the z-axis for 

the coordinate system shown in the figure.  The thick dashed red line is the axis of the blue 

constraint ribbon and is the central line of the red freedom ribbon.  The thick dashed blue line is 

the axis of the red freedom ribbon and is the central line of the blue constraint ribbon.  Both thick 

dashed blue and red lines intersect at the origin.  The two dotted black primary parabolas lie on 

orthogonal planes (x-z and y-z planes) and also intersect at the origin. 

K
p

2
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The surface of this hyperbolic paraboloid is mathematically described using Equation (6.1).  

Appendix G proves that hyperbolic paraboloids composed of orthogonal ribbon sets have equal 

a and b values and are described in terms of their characteristic screw‘s pitch, p, as 

 

 

 

Before concluding the study of orthogonal freedom and constraint ribbon sets, the existence of a 

pure rotational hoop that exists within the freedom space of a system with three skew constraint 

lines that lie on parallel planes and fulfill the geometric requirements specified in Figure 7.64 

should be mentioned.  This pure rotational hoop‘s normal vector will always point along the 

shortest distance line in a direction normal to the parallel planes of the skew constraint lines.  

Systems like those shown in Figure 7.64 will always consist of complementary orthogonal 
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Figure 7.73: A pair of complementary freedom and constraint ribbon sets (red and blue respectively) that 

lie on the surface of a hyperbolic paraboloid with their characteristic screw (green). 
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ribbon freedom and constraint sets and will, therefore, always have a pure translation that points 

along the axis of the orthogonal constraint ribbon. 

 

The study of three skew constraint lines that lie on three parallel planes is now ready to be 

extended to the case where the third constraint line does not intersect the shortest distance line of 

the other two skew constraint lines.  This new system is shown in Figure 7.74.  Ribbon spaces 

created within this type of system are non-orthogonal ribbons. 

 

Note from the right side of Figure 7.74 that such systems‘ three skew constraint lines will not 

look like a disk of lines when viewed from above like was the case for systems of three skew 

constraint lines that create orthogonal ribbons shown in Figure 7.64.   

 

If one follows the same procedures that were applied to the system from Figure 7.64 for finding 

the pure rotational freedom lines and their complementary constraint lines for the current system 

of study shown in Figure 7.74, one finds that two complementary non-orthogonal freedom and 

constraint ribbon sets are created.  A characteristic screw is orthogonal to and intersects both 

ribbons‘ axes at their center points and the lines within each of these complementary non-

orthogonal ribbon sets all lay on the surface of a hyperbolic paraboloid. 

 

2 skew lines
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2 skew lines
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Figure 7.74: Third constraint line added to a plane parallel to the plane of the two skew constraint lines 

that does not intersected the shortest distance line (dashed black) of these two skew constraint lines. 
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Significant differences between the non-orthogonal ribbons created using the system from 

Figure 7.74 and the orthogonal ribbons created using the system from Figure 7.64 should be 

noted.  The axes of the complementary non-orthogonal ribbons are not orthogonal.  The group of 

parallel planes that each constraint line lies on as well as the group of parallel planes that each 

freedom line lies on are not orthogonal to their non-orthogonal ribbon‘s respective axis.  The 

values for a and b from the hyperbolic paraboloid‘s equation given in Chapter 6 as Equation 

(6.1) are not equal for non-orthogonal ribbons.  The normal vector of the pure rotational hoop 

does not point along the axis of the non-orthogonal constraint ribbon set and the pitch of the 

characteristic screw cannot fully describe both complementary non-orthogonal ribbon spaces.  

The following paragraphs will demonstrate these observations. 

 

First one must locate the constraint ribbon‘s axis for the system of three skew constraints given 

in Figure 7.74.  This axis will be along the shortest possible line segment that intersects all three 

skew constraints.  An example of a non-orthogonal ribbon‘s axis is shown in Figure 7.75. 

 

Note that the three parallel planes from Figure 7.75 will never be orthogonal to the non-

orthogonal constraint ribbon set‘s axis.  This axis is the central freedom line within the non-

orthogonal freedom ribbon set.  This central freedom line will never be orthogonal to the central 

constraint line within the non-orthogonal constraint ribbon set since the central constraint line 

will have to lie on a plane that is parallel to the three planes shown in Figure 7.75.  Since the 

Axis of non-orthogonal 

constraint ribbon bin

Axis of non-orthogonal 

constraint ribbon bin

 

Figure 7.75: Axis (dashed red) of the non-orthogonal constraint ribbon set is the shortest line segment 

that intersects all three non-redundant skew constraint lines (blue) 



 168 

central constraint line is the axis of the non-orthogonal freedom ribbon set, the axes of these 

complementary non-orthogonal ribbon sets may never be orthogonal. 

 

Suppose one were to view a hyperbolic paraboloid that consisted of orthogonal freedom and 

constraint ribbon sets from ―above‖ such that one were looking down its characteristic screw and 

compared this view to a similar view of a hyperbolic paraboloid that consisted of non-orthogonal 

freedom and constraint ribbon sets.  If both hyperbolic paraboloids‘ characteristic screws lied 

along the z-axis, one would see the freedom and constraint lines (red and blue respectively) as 

shown in Figure 7.76. 

 

Section 6.1 of Chapter 6 explains the meaning of the orange and purple hyperbolas shown in 

Figure 7.76.  The dashed asymptotic lines represent the axes or central lines of the ribbons.  

Every freedom line (red) will appear to be orthogonal to every constraint line (blue) from the 

view of the hyperbolic paraboloid containing complementary orthogonal ribbon sets shown on 
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Figure 7.76: Looking down the characteristic screw (along z-axis) of a hyperbolic paraboloid similar to 

the one shown in Figure 7.73.  The hyperbolic paraboloid on the left is composed of complementary 

orthogonal freedom (red) and constraint (blue) ribbon sets while the hyperbolic paraboloid on the right is 

composed of complementary non-orthogonal freedom (red) and constraint (blue) ribbon sets. 
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the left side of Figure 7.76.  This will not be the case for the freedom and constraint lines in the 

non-orthogonal ribbon sets shown on the right side of the figure.  The angle, θ, shown on the 

right side of Figure 7.76 will equal 180 degrees subtracted from the angle between the axis line 

shown in Figure 7.75 and its projected line onto the parallel planes of the skew constraint lines. 

 

It is also interesting to note from Figure 7.76 that the hyperbolas in each of the four quadrants 

created by the asymptotic lines will all look identical for the case of complementary orthogonal 

ribbon sets.  This makes sense since the two primary parabolas (dotted black) will rise and fall at 

the same rate since a=b.  For the case of complementary non-orthogonal ribbon sets, the 

hyperbolas that lie in quadrants directly across from each other will look identical while the 

hyperbolas that lie in neighboring quadrants will always look different.  This is due to the fact 

that the primary parabolas will rise and fall at different rates since a does not equal b for 

hyperbolic paraboloids that contain complementary non-orthogonal ribbon sets. 

 

It is shown in Appendix H that the equation of a hyperbolic paraboloid that contains 

complementary non-orthogonal ribbon sets is given as Equation (6.1) where a does not equal b 

and where the characteristic screw‘s pitch, p, is expressed in terms of a and b as 

 

 

 

Note that for the case of non-orthogonal ribbon sets the characteristic screw‘s pitch is not enough 

to fully describe the hyperbolic paraboloid.  Either a or b also must be provided or solved for 

from the original three skew constraint lines to completely describe the surface of the hyperbolic 

paraboloid. 

 

It is also shown in Appendix H that the normal vector, n


, of the pure rotational hoop in the 

freedom space of the system of non-orthogonal ribbon sets will always point in the direction 

 

 

Equation (6.1), Equation (7.4) and Equation (7.5) are the general solutions for any hyperbolic 

paraboloid containing either orthogonal or non-orthogonal ribbon sets.  If a=b in Equation (7.4) 
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and if the resulting characteristic screw‘s pitch is substituted into Equation (6.1), Equation (7.3) 

is again proven for hyperbolic paraboloids that contain orthogonal ribbon sets.  If a=b, Equation 

(7.5) suggests that the pure translation in the freedom space for a system of orthogonal ribbon 

sets will point along the axis of the orthogonal constraint ribbon set which was previously 

confirmed to be true. 

 

7.3.3.1.1 Case 3, Type 7: 

This section describes the freedom and constraint space of Case 3, Type 7.  The complete 

constraint space of this type is shown in Figure 7.77.  It consists of constraint lines that lie on the 

surface of a hyperbolic paraboloid and is, therefore, described by Equation (6.1).  The constraint 

space  includes orthogonal and non-orthogonal ribbons as well as right- and left-handed ribbons. 

 

Note the instructions to the designer for selecting three non-redundant constraints from the 

ribbon.  Any additional constraints selected will be redundant. 
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Figure 7.77: Constraint space of Case 3, Type 7 
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Figure 7.78 shows every pure rotational freedom line within the freedom space of Case 3, Type 

7.  These lines produce a single freedom ribbon set as well as a single pure rotational hoop.  The 

freedom ribbon set will be the complementary ribbon to the constraint space ribbon and they will 

both lie on the same hyperbolic paraboloid.  This freedom ribbon set will be an orthogonal 

ribbon if the constraint space is an orthogonal ribbon and it will be a non-orthogonal ribbon if the 

constraint space is a non-orthogonal ribbon.  The freedom ribbon set will be a left-handed ribbon 

if the constraint space is a right-handed ribbon and it will be a right-handed ribbon if the 

constraint space is a left-handed ribbon.  The normal vector of the pure rotational hoop points in 

the direction given in Equation (7.5). 

 

The twists shown in Figure 7.78 do not fully describe the freedom space of the system.  Screws 

with finite, non-zero pitch values also exist that have not yet been mentioned.  The characteristic 

screw that passes through the z-axis is only one of infinite screws that exist within the freedom 
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Figure 7.78: Pure rotational freedom sets within the freedom space of Case 3, Type 7 
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space of this case and type.  The system‘s screws only lie on the parallel planes of the skew pure 

rotational freedom lines regardless of whether the complementary ribbon sets are orthogonal or 

not.  If the ribbon sets are orthogonal, however, the screws will exist not only on the parallel 

planes of the skew pure rotational freedom lines, but they will only exist within disks on these 

planes with center points that lie on the axis of the freedom ribbon set.  One of the twists within 

each of these disks along the freedom ribbon set‘s axis will be a pure rotational freedom line that 

belongs to the freedom ribbon set, one will be a pure translational twist that points in the 

direction of the normal vector of the pure rotational hoop, and the rest will be screws with 

varying pitch values that depend on the location of the twist within the disk.  This is shown and 

proven in Appendix I. 

 

A depiction of the complete freedom space of Case 3, Type 7 is shown in Figure 7.79 for the 

case of orthogonal complementary ribbon sets.  Only one disk of twists is shown to prevent 

cluttering the figure on the right.  The disk contains a single freedom line (red), a single pure 

translation line (black), and an infinite number of screw lines (green).  The dotted black line 

represents the freedom ribbon set‘s axis, which is orthogonal to the plane of the disk and 

intersects it at its center.  If the complementary ribbon sets were not orthogonal ribbon sets, the 

plane of twists depicted in Figure 7.79 would not be confined to a disk of twists nor would the 

plane be orthogonal to the freedom ribbon set‘s axis.  Screws with finite, non-zero pitch values 

would cover the plane.  The location of these screws and their pitch values may be determined 

using the mathematical approach discussed in Chapter 3 of Section 3.4.2. 
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Figure 7.80 shows how the freedom and constraint spaces of Case 3, Type 7 fit together.  The 

screws with finite, non-zero pitch values are not shown to avoid cluttering the figure. 
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Figure 7.79: Freedom space of Case 3, Type 7 for the case of an orthogonal freedom ribbon set 
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Figure 7.80: Freedom space (red) and constraint space (blue) of Case 3, Type 7 together (without the 

screws shown). 
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7.3.3.2 Skew Line Intersects the Parallel Planes of Two Other Skew Lines 

This section will examine the system of a third constraint line that intersects the parallel planes 

of two other skew constraint lines.  This system is shown in Figure 7.63 and represents the last 

possible way three non-redundant constraint lines could be combined to produce new freedom 

spaces.  After studying this system, Case 3, Type8 and Case 3, Type 9 will be identified and 

mathematically described. 

 

To begin the study of this system, one must consider an important observation: 

“Three skew lines always define a one-sheeted hyperboloid, except in the case where they 

are all parallel to a single plane but not to each other.  In this case, they determine a 

hyperbolic paraboloid. [39]” 

The truth of the second half of this quotation was validated in the previous section, but it is the 

first half of the statement that is of interest for this section.  The quote essentially states that any 

three constraint lines that are arrange like the system shown in Figure 7.63 will lie on the surface 

of a hyperboloid constraint space. 

 

If one wishes to find all the pure rotational freedom lines for such a system, one must apply the 

Rule of Complementary Patterns to locate every line that intersects every constraint line within 

the hyperboloid constraint set.  The solution was already given in Chapter 6.  Recall that every 

hyperboloid is a doubly ruled surface with two rulings or groups of lines that lie entirely on its 

surface.  One group of lines are the constraint lines and the other group of lines are the freedom 

lines as shown in Figure 7.81.  Every line within either group of lines will intersect every line 

within the other group of lines in finite space or at infinity.  The only pure rotational freedom set 

that exists for such a system is, therefore, the hyperboloid freedom set that is identical in shape 

and size to its complementary hyperboloid constraint set.  The freedom lines on the 

hyperboloid‘s surface are, however, a different ruling or group of lines than the constraint lines 

also on its surface. 
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At this point, the significance of doubly ruled surfaces in identifying freedom and constraint 

spaces should be apparent.  One would, in fact, expect every doubly ruled surface to be some 

type of complementary freedom and constraint space since doubly ruled surfaces always contain 

two rulings of lines that all intersect each other at least once and thus satisfy Blanding‘s Rule of 

Complementary Patterns.  Consequently, only two doubly ruled surfaces exist, hyperbolic 

paraboloids and hyperboloids [40].  It is interesting to note that both of these surfaces are the 

surfaces that contain the complementary freedom and constraint sets for any system that contains 

three or more skew constraint lines. 

 

Recall from Chapter 6 that only two types of hyperboloids exist, circular and elliptical.  Every 

system composed of three skew constraint lines like the ones shown in Figure 7.63 will, 

therefore, lie on the surface of one of these types of hyperboloids.  A closer look at each of these 

hyperboloids will now be taken to learn what kind of skew constraint lines will lie on the surface 

of which hyperboloid type.  

 

 

Figure 7.81: Hyperboloid with a ruling of constraint lines (blue) and a ruling of freedom lines (red) 
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Recall from Chapter 6 that every circular hyperboloid has an axis line running through its center 

as shown in Figure 7.82.  The ruled surface of such a hyperboloid will result when a single 

constraint line that is perpendicular to a line that is also perpendicular to this axis line is rotated 

about the axis line as shown in the figure.  Every constraint line that lies on the hyperboloid‘s 

surface will, therefore, lie an equal distance, L, away from this axis line.  The angle between the 

constraint line and a line that is tangent to the hyperboloid‘s central circular cross-section is 

defined as α and is shown in Figure 7.82.  Every constraint line on the surface of the circular 

hyperboloid will have equal α angles.  If an axis line may be found in the midst of three skew 

constraint lines such that the shortest distance segments between this axis and the three skew 

constraint lines will be of equal length, L, and all lie on the same plane, and if the three skew 

constraint lines create equal α angles with this plane, then the three skew constraint lines will lie 

on the surface a circular hyperboloid constraint space.  In every other instance of skew constraint 

lines arranged like those shown in Figure 7.63, the constraint space will be an elliptical 

hyperboloid. 

α

L

Hyperboloid’s Axis

α

L

α

L

Hyperboloid’s Axis

 

Figure 7.82: Parameter‘s necessary for defining a circular hyperboloid with respect to a single constraint 

line (blue) on its surface. 
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Hyperboloids that have α angles between zero and 90 degrees are called left-handed 

hyperboloids.  Hyperboloids that have α angles between 90 and 180 degrees are called right-

handed hyperboloids.  Chapter 8 will explain the reasoning behind this convention.  A pair of 

left- and right-handed circular hyperboloids is shown in Figure 7.83 (If α equaled zero, 90, or 

180 degrees, the lines would no longer lie on the surface of a hyperboloid). 

 

Note also that if a constraint set is a left-handed hyperboloid, its complementary freedom set will 

be a right-handed hyperboloid.  If a constraint set is a right-handed hyperboloid, its 

complementary freedom set will be a left-handed hyperboloid.  This is true for both circular and 

elliptical hyperboloid freedom and constraint sets. 

 

The equation for a circular hyperboloid in terms of the parameters given in Figure 7.82 is 
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Figure 7.83: Condition for distinguishing between left-handed hyperboloids and right-handed 

hyperboloids 
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where the hyperboloid‘s axis lies along the z-axis.  This equation is proven in Appendix J. 

 

Parameters that fully characterize an elliptical hyperboloid are shown in Figure 7.84.  The major 

and minor axes of the hyperboloid‘s central elliptical cross-section are orthogonal to two 

constraint lines that are both skew to the hyperboloid‘s axis.  The length of the line segment 

along the major axis is a while the length of the line segment along the minor axis is b.  The 

angles, 1  and 2 , are the angles between the constraint lines and the lines that are tangent to 

the hyperboloid‘s central elliptical cross-section as shown in the figure.  Only when 1  equals 

2  and a equals b will the hyperboloid be circular.  In any other instance, it will be elliptical. 

 

a

b 
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α1

α2

a

b 

α1
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Figure 7.84: Parameter‘s necessary for defining an elliptical hyperboloid with respect to two constraint 

lines (blue) that lie on its surface. 
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Two possible equations for defining an elliptical hyperboloid in terms of the parameters shown 

in Figure 7.84 are 

 

 

 

and 

 

 

 

where the major axis of the central elliptical cross-section lies along the x-axis, the minor axis of 

the central elliptical cross-section lies along the y-axis, and the hyperboloid‘s axis lies along the 

z-axis.  These equations are proven in Appendix K.  Note that only three of the four parameters 

shown in Figure 7.84 are necessary for fully defining an elliptical hyperboloid. 

 

7.3.3.2.1 Case 3, Type 8: 

This section describes the freedom and constraint space of Case 3, Type 8.  The complete 

constraint space of this type is shown in Figure 7.85.  It consists of a single circular hyperboloid 

constraint set that could either be right-handed or left-handed.  It is mathematically described 

using Equation (7.6) for any real values of L and α. 
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Note the instruction to the designer for selecting non-redundant constraints from the hyperboloid.  

Any constraint selected after the first three will be redundant.  Also note that if L=0, this case and 

type will become Case 3, Type 4.  If α=0 or 180 degrees, this case and type will become Case 3, 

Type 1.  If α=90 degrees, this case and type will become Case 3, Type 5.  If L=0 and α=0 or 180 

degrees, this case and type will become Case 2, Type 1.  If L=0 and α=90 degrees, this case and 

type will become Case 1, Type 1. 

 

The only pure rotational freedom set within the freedom space of Case 3, Type 8 is shown in 

Figure 7.86.  It is a circular hyperboloid that is mathematically described by Equation (7.6) with 

an L parameter equal to the L parameter of the circular hyperboloid constraint set.  The circular 

hyperboloid freedom set‘s α angle will, however, cause tan(α) to be equal in magnitude but 

opposite in sign to the tan(α) of the α angle of the circular hyperboloid constraint set.  In other 

words, the circular hyperboloid freedom set will be right-handed if the circular hyperboloid 
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Figure 7.85: Constraint space of Case 3, Type 8 
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constraint set is left-handed and the circular hyperboloid freedom set will be left-handed if the 

circular hyperboloid constraint set is right-handed. 

 

No pure translations exist within the freedom space of Case 3, Type 8, but an infinite number of 

screws do exist.  Visually representing these screws is, however, extremely difficult and will not 

be done in this thesis.  The system‘s screws may be located using the mathematical method given 

in Chapter 3 described in Section 3.4.2.  One screw, however, is worth mentioning and it lies 

along the axis of the circular hyperboloid pure rotational freedom set. 

 

Figure 7.87 shows how the freedom and constraint spaces of Case 3, Type 8 fit together.  The 

screws with finite, non-zero pitch values are not shown to avoid cluttering the figure. 
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Figure 7.86: Freedom space of Case 3, Type 8 without screws 
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7.3.3.2.2 Case 3, Type 9: 

This section describes the freedom and constraint space of Case 3, Type 9.  The complete 

constraint space of this type is shown in Figure 7.88.  It consists of a single elliptical 

hyperboloid constraint set that could either be right-handed or left-handed.  It is mathematically 

described using either Equation (7.7) or Equation (7.8) for any real values of a, b, 1 , and 2 . 

Y

Z

X

Y

Z

X

 

Figure 7.87: Freedom space (red) and constraint space (blue) of Case 3, Type 8 together (without the 

screws shown). 
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Note the instruction to the designer for selecting non-redundant constraints from the hyperboloid.  

Any constraint selected after the first three will be redundant.  Also note that if a=0 and b=0, this 

case and type will become Case 3, Type 4.  If 1 =0 or 180 and 2 =0 or 180 degrees, this case 

and type will become Case 3, Type 1.  If 1 =90 degrees and 2 =90 degrees, this case and type 

will become Case 3, Type 5.  If a=0, b=0, 1 =0 or 180 degrees and 2 =0 or 180 degrees, this 

case and type will become Case 2, Type 1.  If a=0, b=0, 1 =90 degrees and 2 =90 degrees, this 

case and type will become Case 1, Type 1.  It has also already been mentioned that if a=b and 

1 = 2 , this case and type will become Case 3, Type 8. 

 

The only pure rotational freedom set within the freedom space of Case 3, Type 9 is shown in 

Figure 7.89.  It is also an elliptical hyperboloid that is mathematically described using either 
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Figure 7.88: Constraint space of Case 3, Type 9 
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Equation (7.7) or Equation (7.8) with a and b parameters that are equivalent to the a and b 

parameters of the elliptical hyperboloid constraint set.  The elliptical hyperboloid freedom set‘s 

1  angle will cause tan( 1 ) to be equal in magnitude but opposite in sign to the tan( 1 ) of the 

1  angle of the elliptical hyperboloid constraint set, and the elliptical hyperboloid freedom set‘s 

2  angle will cause tan( 2 ) to be equal in magnitude but opposite in sign to the tan( 2 ) of the 

2  angle of the elliptical hyperboloid constraint set.  In other words, the elliptical hyperboloid 

freedom set will be right-handed if the elliptical hyperboloid constraint set is left-handed and the 

elliptical hyperboloid freedom set will be left-handed if the elliptical hyperboloid constraint set is 

right-handed. 

 

No pure translations exist within the freedom space of Case 3, Type 9, but an infinite number of 

screws do exist.  Visually representing these screws is, however, extremely difficult and will not 
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Figure 7.89: Freedom space of Case 3, Type 9 without screws 
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be done in this thesis.  The system‘s screws may be located using the mathematical method given 

in Chapter 3 described in Section 3.4.2.   

 

Figure 7.90 shows how the freedom and constraint spaces of Case 3, Type 9 fit together.  The 

screws with finite, non-zero pitch values are not shown to avoid cluttering the figure. 
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Figure 7.90: Freedom space (red) and constraint space (blue) of Case 3, Type 9 together (without the 

screws shown). 
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CHAPTER 8:   

“Cases 4, 5, and 6” 

This chapter describes and validates every constraint space with its unique freedom space within 

the last three cases—cases 4, 5, and 6.  The reader may recall from the final section of Chapter 5 

that there are 6 total cases where the case of a system corresponds to the number of non-

redundant constraints in that system.  In Chapter 7 it was shown that the number of types a case 

has is the number of freedom and constraint space pairs within that case, or the number of 

different ways the non-redundant constraints may be arranged within the system to produce 

fundamentally different freedom spaces.  Although these principles still apply for the cases 

presented in this chapter, a different approach will be used for finding each type‘s freedom and 

constraint space pairs. 

 

The reader may wonder why the last three cases are presented in a different chapter than the first 

three cases.  The reason for this is largely because the first three cases have types that consist of 

―small‖ constraint spaces with ―large‖ freedom spaces and the last three cases have types that 

consist of ―large‖ constraint spaces with ―small‖ freedom spaces.  (A ―small‖ space is a space 

with fewer sets that contain fewer infinite lines than ―large‖ spaces have.  An infinite planar set 

of parallel lines, for example, contains fewer lines than an infinite box set containing all parallel 

lines in three-space.)  This observation is not surprising since the last three cases will always 

have types with constraint spaces that consist of more independent wrenches than the number of 

independent twists that create their unique freedom spaces.   One can easily prove this fact using 

Equation (2.1).  Although, one would expect the types within Case 3 to have the same number 

of independent wrenches as independent twists, one must remember that the constraint spaces 

within Case 3 will be smaller than the freedom spaces within Case 3 since the constraint spaces 

consist only of wrenches with q values equal to zero while their freedom spaces consists of twists 

with any pitch values.  The types within Case 1 and Case 2 will have smaller constraint spaces 

than freedom spaces in light of Equation (2.1).  The reader can also visually confirm these facts 
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by noting how much less complicated the constraint spaces from Chapter 7 are from their 

freedom spaces.  In this chapter the opposite will be found to be true. 

 

Since the freedom spaces within the types of Cases 4 through 6 are much less complicated than 

their constraint spaces, it makes sense that the pairs of freedom and constraint spaces should be 

found by starting first with every possible combination of their independent twist lines instead of 

starting with every possible combination of their non-redundant constraint lines like was done in 

Chapter 7 for Cases 1 through 3.  This fundamentally different approach to finding the freedom 

and constraint space pairs within the last three cases is another reason why they belong in a 

separate chapter from the first three cases. 

 

Before beginning the study of these last three cases, the obvious should first be pointed out.  

Only one type exists within Case 6.  This type consists of an empty freedom space that contains 

no twist lines of any kind.  This statement is known to be true since an object constrained by 6 

non-redundant constraints is fixed and does not move.  One can also deduce that Case 5 contains 

only three types.  Each type consists of a single twist line that is either a pure rotational freedom 

line, a non-zero finite pitch screw line, or a pure translational line.  No other fundamentally 

different freedom spaces exist that consist of a single independent twist vector.  The number of 

types within Case 4 is, however, not obvious at all.  Finding and describing the freedom and 

constraint space pairs within Case 4 will be a significant portion of this chapter. 

 

8.1 Finding Case 4 Freedom Spaces 

This section proves that there are only 10 possible ways to combine two independent twists to 

create freedom spaces for systems with four non-redundant constraints.  It will be shown that 

only 9 of these freedom spaces are possible spaces for flexure systems with constraints capable 

only of providing axial forces (q=0).  This section will also describe the geometry of these 

freedom spaces. 

 

To begin the proof, first recall that only three different types of twists exist to combine: (1) pure 

rotational freedom lines (p=0), (2) screw lines with finite non-zero pitch values, and (3) pure 
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translational lines (p=∞).  Furthermore, only four different ways exist for combining two lines 

with respect to each other: (1) they may be coincident, (2) they may be parallel, (3) they may 

intersect at a single point in finite space, or (4) they may be skew. 

 

First, the freedom spaces that result from linearly combining any two twists that are either 

coincident or parallel with respect to each other will be determined. 

 

8.1.1 Coincident and Parallel Pairs of Twists 

This section mathematically proves and describes all the freedom spaces that result from linearly 

combining two general twists that are either coincident or parallel with respect to each other.  

Figure 8.1 defines the parameters of two such parallel twist lines separated by a distance of d.  If 

d=0, the twists are coincident.  Depending on the values assigned to the different pitches, the two 

twists could either be pure rotations, screws, or pure translations. 

 

Using Figure 8.1 and the principles discussed in Chapter 3, the two twists are defined as 
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Figure 8.7: Parameters defined for two parallel twists 
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The general freedom space that results from the linear combination of these two independent 

twists is, therefore, mathematically represented as 

 

 

 

where A and B are any real numbers.  Equation (8.2) suggests that every twist within the general 

freedom space has a rotational velocity vector, w


, and a translational velocity vector, v


, of 

 

  

 

 

If Equation (8.3) is plugged into Equation (3.4), one finds that every twist within the general 

freedom space will have a pitch value, p, of 

 

 

 

 If one applies Equation (8.3) and Equation (8.4) to the location matrix equation given in 

Equation (3.8) to find the location vector, c


, of the twists within the general freedom space, one 

finds that 

 

 

 

where xc  may be any real value.  Equation (8.5) only applies to twists that have location vectors 

that are not pure translations.  In other words A+B cannot equal zero for Equation (8.5) to exist.    

 

These equations will now be applied for determining the freedom spaces that exist when the two 

twist lines are coincident. 
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8.1.1.1 Coincident Pairs of Twists 

This section mathematically proves and describes all the freedom spaces that result from linearly 

combining two general twists that are coincident.  If d=0 in all of the previous equations, they 

will all be applicable equations for describing the twists that result from a linear combination of 

two coincident twist lines.  To see that this is true refer to Figure 8.1. 

 

Equation (8.5) suggests that every resulting twist within the freedom space of two coincident 

twist lines (where d=0) will pass through the origin.  Also Equation (8.3) suggests that every 

resulting twist line will have an orientation vector, w


, that also points along the x-axis in the 

same direction as the original coincident twist lines.  In short, every resulting twist line will also 

be coincident with the original two coincident twist lines. 

 

If both coincident twists are pure rotations ( 021  pp ), Equation (8.4) suggests that every 

resulting twist will also be a pure rotation with p=0.  The freedom space resulting from these two 

twists is, therefore, a single pure rotational freedom line that belongs to Case 5 since these two 

twists are really not independent. 

 

If both coincident twists are screws with equal pitch values ( 021  pp ) that are non-zero and 

finite, Equation (8.4) suggests that every resulting twist will also be a screw with a pitch value 

equal to the original two screw pitch values ( ppp  21 ).  The freedom space resulting from 

these two twists is, therefore, a single screw with a non-zero finite pitch value that belongs to 

Case 5 since these two twists are really not independent. 

 

If both coincident twists are pure translations with infinite pitch values such that 
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the linear combination of these two pure translations must result in twists that are also pure 

translations that point in the same direction along the x-axis.  This is clear by inspection of the 

resultant twist, T


, given as 

 

 

 

The freedom space resulting from these two twists is, therefore, a single pure translation that 

belongs to Case 5 since these two twists are really not independent. 

 

If one of the coincident twists is a pure rotation ( 01 p ) and the other is a screw with a non-zero 

finite pitch value ( 02 p ), Equation (8.4) suggests that the resulting twists within the freedom 

space will be coincident twists with pitch values, p, of 

 

 

 

Or if both coincident twists are screws with pitch values that don‘t equal each other 

( 021  pp ) but are non-zero and finite, the resulting twists within the freedom space will be 

coincident twists with pitch values, p, given in Equation (8.4). 

 

If one of the coincident twists is a pure rotation ( 01 p ), and the other is a pure translation 

( 2p ) such that 

 

 

 

 

the linear combination of these coincident twists is given as 
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Every twist within the freedom space of such a system will, therefore, be coincident with the 

original twists and will have pitch values, p, given by 

 

 

 

If one of the coincident twists is a screw with a finite non-zero pitch value and the other twist is a 

pure translation with an infinite pitch, a similar analysis will show that the resultant twist will 

either be a coincident screw or a coincident pure rotation. 

 

Since every possible combination has now been considered, the conclusion can be drawn that 

any two coincident twists with different pitch values will result in a freedom space that consists 

of an infinite number of twists that are all coincident with the original two twists with pitch 

values that correspond to every real number ranging from negative infinity to positive infinity.  

This freedom space is shown in Figure 8.2.  One of the lines is red corresponding to the single 

pure rotational freedom line that exists within the space.  There is also a pure rotational hoop 

with a normal vector that points in the direction of the pure rotational freedom line.  This hoop 

represents the pure translation that also exists within this freedom space.  There is also a green 

line that is coincident with the pure rotational freedom line that represents an infinite number of 

screws each with a unique non-zero finite pitch value.  This freedom space belongs to Case 4 

because it consists of two independent twists. 

A

B
p  . (8.11) 

 

Figure 8.2: Freedom space within Case 4 resulting from the linear combination of two coincident twist 

lines with different pitch values 
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8.1.1.2 Parallel Pairs of Twists 

This section mathematically proves and describes all the freedom spaces that result from linearly 

combining two general twists that are parallel.  Equation (8.1) through Equation (8.5) are all 

applicable equations for any pair of parallel twists ( 0d  from Figure 8.1).  

 

If both parallel twists are pure rotations ( 021  pp ), Equation (8.4) suggests that all the 

resultant twists will also be pure rotations (p=0) as long as A+B does not equal zero.  It is also 

known form the location vector given in Equation (8.5) that these resultant pure rotations all lay 

on the x-y plane.  As long as A+B does not equal zero, these resultant freedom lines are all 

parallel to the original two parallel twists.  This fact is known because the orientation vector 

given in Equation (8.3) suggests that they will always point in the direction of the x-axis.  If 

A+B=0, however, the resultant twist is a pure translation that points along the z-axis 

perpendicular to the plane of the pure rotational freedom lines.  This fact is known because the 

rotational velocity vector in Equation (8.3) will be a zero vector and the translational velocity 

vector‘s x- and y-components will equal zero while its z-component will equal –dB when A+B=0 

and 021  pp .   

 

The complete freedom space resulting from two parallel pure rotational freedom lines, therefore, 

is shown in Figure (8.3).  It consists of a plane that contains an infinite number of parallel pure 

rotational freedom lines and a pure rotational hoop with a normal vector that is parallel to the 

normal vector of the plane of parallel lines. 
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If both parallel twists are screws with equal finite non-zero pitch values ( 021  pp ), Equation 

(8.4) suggests that all the resultant twists will also be screws with equal pitch values 

( 21 ppp  ) as long as A+B does not equal zero.  It is also known form the location vector 

given in Equation (8.5) that these resultant screws of equal pitch all lay on the x-y plane.  As 

long as A+B does not equal zero, these resultant screws are all parallel to the original two parallel 

twists.  This fact is known because the orientation vector given in Equation (8.3) suggests that 

they will always point in the direction of the x-axis.  If A+B=0, however, the resultant twist is a 

pure translation that points along the z-axis perpendicular to the plane of the screw lines.  This 

fact is known because the rotational velocity vector in Equation (8.3) will be a zero vector and 

the translational velocity vector‘s x- and y-components will equal zero while its z-component 

will equal –dB when A+B=0 and 21 ppp  .   

 

The complete freedom space resulting from two parallel screw lines of equal pitch, therefore, is 

shown in Figure (8.4).  It consists of a plane that contains an infinite number of parallel screw 

lines of equal pitch and a pure rotational hoop with a normal vector that is parallel to the normal 

vector of the plane of parallel lines. 

 

If both parallel twist lines are pure translations, their linear combination results in a freedom 

space that consists of a single pure translation.  This resultant pure translation points in the same 

Figure 8.3: Freedom space within Case 4 resulting from the linear combination of parallel pure rotational 

freedom lines 

 

Figure 8.4: Freedom space within Case 4 resulting from the linear combination of parallel screw lines of 

equal pitch 
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direction as the original two twist lines.  This fact is known from the study of pure translations in 

Chapter 4.  Recall that pure translations are only directional and cannot be described using 

location vectors.  There is, therefore, no difference between coincident pure translational lines 

and parallel pure translational lines.  It doesn‘t make sense to distinguish between them.  Both 

conditions result in twists that may be described using Equation (8.6).  The freedom space 

created from two ―parallel‖ pure translations, therefore, belongs to a system within Case 5 since 

it consists of a single independent twist as mentioned earlier. 

 

For the same reason, there is no difference between the freedom space created by combining a 

pure rotational freedom line with a ―coincident‖ pure translational line and the freedom space 

created by combining a pure rotational freedom line with a ―parallel‖ pure translational line.  

Both scenarios create the freedom space shown in Figure 8.2.  Again the same principle applies 

when considering the freedom space created by combining a screw line with a ―parallel‖ pure 

translational line.  This combination results in the same freedom space as the freedom space 

created by combining a screw line with a ―coincident‖ pure translational line.  This freedom 

space is also the one shown in Figure 8.2.  

 

If one of the parallel twist lines is a pure rotational freedom line ( 01 p ) and the other is a screw 

line with a finite non-zero pitch value, Equation (8.4) suggests that the resultant twist‘s pitch is 

given by Equation (8.8) as long as A+B does not equal zero.  These lines all lie on the x-y plane 

and are all parallel to the original parallel twist lines.  This fact is known from the location vector 

given in Equation (8.5) for parallel twist lines.  Note also from Equation (8.5) and Equation 

(8.8) that the farther away the resultant screws are from the pure rotational freedom line, the 

larger their pitch increases.  This increase is linear.  If A+B=0, Equation (8.3) suggests that the 

resultant twist is a pure translation that points in the direction 

 

 

 

The projection of this vector onto the plane containing the pure rotational freedom line and the 

infinite screw lines is always parallel to these lines. 
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If the two parallel twists are screws with different finite non-zero pitch values ( 021  pp ), a 

similar freedom space is created.  The pitch of these resultant twists is given in Equation (8.4).  

These resultant twists all lie on the x-y plane and are all parallel to the original parallel twists.  

One of the resultant twists on that plane will be a pure rotational freedom line.  If A+B=0, it can 

be determined that the resultant twist is a pure translation that points in the direction of the v


 

vector from Equation (8.3). 

 

The freedom space resulting from the linear combination of two parallel twists with different 

finite pitch values is, therefore, shown in Figure 8.5.  It consists of a plane containing a single 

pure rotational freedom line and an infinite number of screws with finite non-zero pitch values.  

The farther these screws are located from the pure rotational freedom line, the larger their pitch 

values become.  Every twist line on this plane is parallel.  A pure rotational hoop also exists with 

a normal vector that points in a direction that is neither parallel nor orthogonal to the twist lines 

on the plane.  The projection of this normal vector onto this plane is, however, parallel to the 

twist lines on the plane.  As the hoop‘s normal vector gets closer to being parallel to the pure 

rotation on the plane of twists, the pitch values of the screws on the plane will increase. 
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If the pure translation is perpendicular to the plane of twists, the freedom space becomes the 

freedom space shown in either Figure 8.3 or in Figure 8.4.  If the pure translation is parallel to 

the twists on the plane, the freedom space becomes the freedom space shown in Figure 8.2. 

 

Every possible way any two twists may be combined with coincident or parallel orientations has 

now been considered.  So far four freedom spaces within Case 4 have been found and 

mathematically described that resulted from these linear combinations.  Twists that intersect or 

are skew with respect to each other are now ready to be considered. 

 

 

 

 

 

 

Figure 8.5: Freedom space within Case 4 resulting from the linear combination of two parallel twist lines 

of different finite pitch values 
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8.1.2 Intersecting and Skew Pairs of Twists 

This section mathematically proves and describes all the freedom spaces that result from linearly 

combining two general twists that either intersect or are skew.  To begin the study, the case of 

two intersecting, orthogonal twists will be considered.  A general example of such twists is 

shown in Figure 8.6. 

 

Using Figure 8.6 and the principles discussed in Chapter 3, the two orthogonal twists can be 

defined as 

 

 

 

 

The general freedom space that results from the linear combination of these two independent 

twists is, therefore, mathematically represented as 

 

 

A  + B

B

w1, p1

w2, p2

x

y

z

A

θ

w, p

c

w1 = 1

w2 = 1

θ

B

A

2 2
A  + B

B

w1, p1

w2, p2

x

y

z

AA

θ

w, p

c

w1 = 1w1 = 1

w2 = 1w2 = 1

θ

B

A

2 2

 

Figure 8.6: Parameters defined for two orthogonally intersecting twists that lie along the x and y axes.  

Another twist is also shown that represents a general linear combination of the other two twists. 
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where A and B are any real numbers. Equation (8.14) suggests that every twist within the 

general freedom space will have a rotational velocity vector, w


, and a translational velocity 

vector, v


, of 

 

  

 

 

If Equation (8.15) is plugged into Equation (3.4), one finds that every twist within the general 

freedom space will have a pitch value, p, of 

 

 

 

If one applies Equation (8.15) and Equation (8.16) to the location matrix equation given in 

Equation (3.8) to find a possible location vector, c


, for the twists within the general freedom 

space, one finds that 

 

 

 

where xc  may be any real value.  Equation (8.17) applies only to twists that have location 

vectors that are not pure translations.  In other words, A and B cannot simultaneously equal zero 

for Equation (8.17) to exist. 

 

Before proceeding to identify and describe all the freedom spaces that are created by combining 

two orthogonal, intersecting twists, it must first be emphasized that the linear combination of any 

two such twists will result in an infinite number of twists that all lie on the surface of a 

cylindroid or a disk, which is essentially a collapsed cylindroid where the h parameter shown in 

Figure 6.9 from Chapter 6 equals zero.  The two orthogonal, intersecting twists will be the 

principal generators of the resulting cylindroid.  This fact is proven in Appendix L. 
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Now suppose the two orthogonal intersecting twists are both pure rotations such that 

021  pp .  Equation (8.16) suggests that all the other twists in the resulting freedom space 

must also have pitch values equal to zero.  It is known that this freedom space consisting of pure 

rotational freedom lines is a disk because of Equation (L.6) in Appendix L.  This freedom 

space is shown in Figure 8.7. 

  

Suppose the two orthogonal intersecting twists are both screws with equivalent finite, non-zero 

pitch values such that 021  pp .  Equation (8.16) suggests that all the other twists in the 

resulting freedom space must also have equivalent pitch values.  This freedom space consisting 

of screws is a disk because of Equation (L.6) in Appendix L.  This freedom space is shown in 

Figure 8.8. 

 

 

Figure 8.7: Freedom space within Case 4 resulting from the linear combination of two intersecting pure 

rotational freedom lines. 

 

Figure 8.8: Freedom space within Case 4 resulting from the linear combination of two intersecting 

screws with equivalent pitch values.  Every screw within the disk has the same pitch value. 
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Suppose the two orthogonal intersecting twists are both pure translations with infinite pitch 

values such that  

 

 

 

 

The linear combination of these two pure translations must result in twists that are also pure 

translations and point in directions parallel to the x-y plane.  This fact is evident by inspection of 

the resultant twist, T


, given as 

 

 

 

The freedom space resulting from these two twists is, therefore, a disk containing all pure 

translations and is shown in Figure 8.9. 

 

Recall, however, from Section 5.2.4 in Chapter 5 that this particular freedom space cannot have 

a feasible complementary constraint space that consists of four non-redundant constraints that are 

only capable of imparting axial forces (where q=0).  In the realm of flexure systems, therefore, 

this freedom space will not be counted among the Case 4 types. 
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Figure 8.9: Freedom space within Case 4 resulting from the linear combination of two pure rotations that 

point in different directions. 
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If one of the orthogonal intersecting twists is a pure rotation ( 01 p ) and the other is a screw 

with a non-zero finite pitch value ( 02 p ), it may be determined from Equation (L.6) in 

Appendix L that the resulting freedom space will be a cylindroid of twists with a height, h, equal 

to the magnitude of the pitch value, 2p . Since 01 p , it may also be determined from Equation 

(8.16) that every twist within this freedom space will have a pitch value, p, equal to 

 

 

 

Since 02 p , Equation (8.20) suggests that the only way any twist within this cylindroid 

freedom space may be a pure rotational freedom line (where p=0) is if B=0.  But when this 

condition is true, Equation (8.14) suggests that 2T


 has no effect on the linear combination and 

that the only pure rotational freedom line that exists within the freedom space is the principal 

generator, 1T


, that was declared to be a pure rotation from the beginning. 

 

A new freedom space that consists of an infinite number of twists on the surface of a cylindroid 

has, therefore, been identified where every twist within the cylindroid is a screw with a finite 

non-zero pitch value except for a single pure rotational freedom line that will always be one of 

the cylindroid‘s principal generators.  This freedom space is shown in Figure 8.10. 
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If one of the orthogonal intersecting twists is a pure rotation ( 01 p ) and the other is a pure 

translation ( 2p ), the same freedom space that was shown in Figure 8.3 will result from their 

linear combination.  This should be clear by noting that two such orthogonal twists already exist 

within the freedom space shown in Figure 8.3. 

 

If both orthogonal intersecting twists are screws with different finite non-zero pitch values such 

that 021  pp , Equation (L.6) in Appendix L suggests that the resulting freedom space will 

be a cylindroid of twists with a height, h, equal to the magnitude of the difference between the 

two pitch values, 21 pp  .  Every twist within the freedom space has a pitch value, p, given by 

Equation (8.16).  If this value is set equal to zero in an attempt to determine how many pure 

rotational freedom lines exist within the freedom space, it is found that  
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Figure 8.10: Freedom space within Case 4 that consists of a single pure rotational freedom line (red) and 

an infinite number of screws (green) on the surface of a cylindroid where the pure rotational freedom line 

is one of the cylindroid‘s principal generators. 
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Equation (8.21) suggests that as long as the two principal generator twists within the cylindroid 

freedom space have pitch values of opposite signs, two pairs of real A and B constants exist such 

that Equation (8.14) results in two pure rotational twists.  In other words, if the principal 

generators‘ pitch values have different signs, the resulting freedom space will be a cylindroid 

containing two pure rotations.  The rest of the twists in the freedom space will be screws with 

finite non-zero pitch values.  The two pure rotational freedom lines must be skew.  If they 

intersect, they would belong to the freedom space shown in Figure 8.7.  

 

A new freedom space that consists of an infinite number of twists on the surface of a cylindroid 

has, therefore, been identified where every twist within the cylindroid is a screw with a finite 

non-zero pitch value except for two skew pure rotational freedom lines.  This freedom space is 

shown in Figure 8.11. 

 

Note from the plus and minus sign in Equation (8.21) that no cylindroid freedom space will ever 

contain more than two pure rotations.  There will always be either two skew pure rotations 

within the cylindroid, one single pure rotation as the principal generator of the cylindroid, or no 

pure rotations in the cylindroid.  The latter case will now be considered. 
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Figure 8.11: Freedom space within case 4 that consists of two skew pure rotational freedom lines (red) 

and an infinite number of screws (green) that all lie on the surface of a cylindroid. 
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Equation (8.21) suggests that if the two principal generator twists within the cylindroid freedom 

space have pitch values of similar signs, no real pairs of A and B constants exist.  In other words, 

if the principal generators‘ pitch values have similar signs, the resulting freedom space will be a 

cylindroid containing no pure rotations.  It will consist entirely of screws with finite non-zero 

pitch values.  This new freedom space is shown in Figure 8.12. 

 

If one of the orthogonal intersecting twists is a screw with a finite non-zero pitch value ( 01 p ) 

and the other is a pure translation ( 2p ), the same freedom space that was shown in Figure 

8.4 will result from their linear combination.  This should be clear after noting that two such 

orthogonal twists already exist within the freedom space shown in Figure 8.4. 

 

Every possible freedom space that results from linearly combining two orthogonal, intersecting 

twists has now been found and described.  The linear combination of twists that don‘t just 

intersect at 90 degrees but intersect at any angle will now be considered.  The reader may be 

surprised to recognize that the freedom spaces that result from these linear combinations have 

already been found.  Suppose, for instance, that two intersecting twists are both pure rotations.  

Regardless of their angle of intersection, the freedom space created from their linear combination 

h
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Figure 8.12: Freedom space within Case 4 that consists entirely of screws (green) that all lie on the 

surface of a cylindroid. 
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is the space shown in Figure 8.7.  If these two twists are both screws with equivalent pitch 

values, the freedom space is the space shown in Figure 8.8.  If the two twists are both pure 

translations, the freedom space is the space shown in Figure 8.9.  If one of the twists is a pure 

rotation and the other twist that intersects it at an angle that is not 90 degrees is a screw, the 

freedom space is the space shown in Figure 8.11.  If one of the twists is a pure rotation and the 

other twist that intersects it at an angle that is not 90 degrees is a pure translation, the freedom 

space is the space shown in Figure 8.5.  If one of the twists is a screw and the other twist that 

intersects it at an angle that is not 90 degrees is a pure translation, the freedom space is also the 

space shown in Figure 8.5.  If both of the twists that intersect at an angle that is not 90 degrees 

are screws of different finite non-zero pitch values, the freedom space is either the space shown 

in Figure 8.10, Figure 8.11, or Figure 8.12 depending on the angle of intersection and the pitch 

values of the twists.  Any two twists that intersect at any arbitrary angle will, therefore, not 

generate any new freedom spaces that have not yet been considered previously. 

 

The freedom spaces that are generated by linearly combining two skew twists will now be 

considered.  Again the reader may be surprised to recognize that no new freedom spaces are 

generated from the linear combination of these twists either.  This statement is proven true by 

simply noting that the linear combination of every possible pair of skew twist lines always 

results in a cylindroid freedom space regardless of the twists‘ pitch values, their skew angle or 

their shortest distance line segment‘s length.  Since only three types of cylindroid freedom 

spaces exist, the linear combination of any two skew twists always results in either the freedom 

space shown in Figure 8.10, Figure 8.11, or Figure 8.12. 

 

It makes no sense to consider the linear combination of two skew pure translations or to consider 

any pure translation being skew to any other twist for that matter.  For two lines to be skew with 

respect to each other, they have to not only have a direction, but also a location.  Pure 

translations only have direction; they have no location.  Chapter 4 discusses this fact in greater 

detail.  In short, the linear combination of two ―skew‖ pure translations will belong to the 

freedom space shown in Figure 8.9 and the linear combination of any pure translation that is 

―skew‖ with either a pure rotation or a screw will belong to the freedom space shown in Figure 

8.5. 
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Every possible way any two twists with any pitch values may be linearly combined has now been 

considered and, consequently, 10 different freedom spaces that result from these linear 

combinations have been discovered (9 of which are feasible for flexure system design where 

their constraint space contains four non-redundant constraints with q=0). 

  

The author was also able to confirm the existence of each of these freedom spaces by applying 

the approach used to find the freedom spaces for the first three cases discussed in Chapter 7.  

This approach is performed by considering every possible way four non-redundant constraints 

may be arranged in three-space and then by applying Blanding‘s Rule of Complementary 

Patterns to locate every pure rotational freedom line that exists for each system.  The proof of 

this approach is extremely lengthy for the fourth case and the freedom spaces that contain no 

pure rotations are easily overlooked using this approach.  For this reason, the author opted to use 

the more mathematical and thorough approach applied in this section. 

 

A program was also coded using MATLAB to help the author visualize and understand the 

freedom spaces found in this section and to prove that they are indeed the only existing freedom 

spaces within Case 4.  This program is explained and provided in Appendix M. 

 

Before continuing on to the next section, the freedom space shown in Figure 7.59 from Chapter 

7 will briefly be revisited.  It should now be understood why the linear combination of any one 

of the pure rotational freedom lines on the top plane with any one of the skew pure rotational 

freedom lines on the bottom plane results in one of the cylindroids in the freedom space 

consisting of an infinite number of cylindroids that lay side by side. 
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8.2 Sub-constraint Space 

This section introduces the concept of sub-constraint space.  An example is given to show the 

reader how the author went about finding every sub-constraint space within every constraint 

space. 

 

Sub-constraint spaces, like constraint spaces, are spaces that contain an infinite number of 

constraint lines.  They instruct the designer how to pick the number of non-redundant constraints 

from within the system‘s constraint space.  Sub-constraint spaces always lie within the constraint 

space of the system and are generally made up of multiple constraint sets. 

 

The following example will help clarify this concept.  Consider the constraint space shown in 

Figure 8.13.  This constraint space consists of two constraint sets, a box containing every 

parallel constraint line in three-space and a plane containing every constraint line that exists on 

that plane.  The constraint space contains four non-redundant constraints and consequently 

belongs to Case 4.  This space will be studied and derived later, but for this example it is 

sufficient to simply know that it exists. 

 

This space contains four non-redundant constraints, but it is not known which four constraints to 

select from within the space such that they will all be non-redundant.  The four constraints 

Box

Plane

Box

Plane

 

Figure 8.13: Constraint space that contains 4 non-redundant constraints 
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should not all be selected from the plane, for instance, since the constraint space of Case 3, Type 

1 suggests that at least one of these four constraints will be redundant.  Note, therefore, that some 

form of instruction is required to inform the designer of all the possible ways non-redundant 

constraints may be selected from the constraint space.  The spaces of constraints that inform the 

designer of each way non-redundant constraints may be selected from a system are the system‘s 

sub-constraint spaces. 

 

To find every sub-constraint space for the system shown in Figure 8.13, one must determine 

how many ways four constraints could be selected from the two sets within the constraint space 

and then check which of these ways will result in all four constraints being non-redundant.  

Consider the combinations shown in Table 8.1. 

 

Table 8.1: Five different ways four constraints could be selected from the two constraint sets within the 

constraint space shown in Figure 8.13.  The sub-constraint spaces come from the combinations in red. 

Sets within the constraint space 

 

Number of 

constraints 

to select 

from within 

each set 

Box Plane 

4 0 

0 4 

3 1 

1 3 

2 2 

 

The combinations suggested in the first two rows will never allow the designer to appropriately 

select four non-redundant constraints.  If four constraints are chosen from the box and no 

constraints are chosen from the plane, the constraint space of Case 3, Type 5 suggests that at 

least one of these constraints must be redundant.  It was already shown earlier that if no 

constraints are chosen from the box and all four constraints are chosen from the plane, that at 

least one of these constraints will be redundant. 

 

But suppose one chooses three constraints from the box and one constraint from the plane.  If the 

constraint chosen from the plane is parallel to the constraint lines in the box, it will always be 
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redundant.  The designer must, therefore, be instructed to select a constraint from the plane that 

is not parallel to the constraint lines in the box.  Recall also from Case 2, Type 2 that if the three 

parallel constraints selected from the box all lie on the same plane, one of them will always be 

redundant.  The designer, therefore, must also be instructed to select three constraints from the 

box that don‘t all lie on the same plane.  As long as these two conditions are satisfied, the 

designer will always appropriately select four non-redundant constraints where three are selected 

from the box and one is selected from the plane.  This first sub-constraint space is shown in 

Figure 8.14.  Note also that it doesn‘t matter if the designer selects constraints from the box that 

also lie on the plane.  As long as the instructions shown in Figure 8.14 are properly observed, 

the four constraints chosen will always be non-redundant. 

 

Now suppose one chooses three constraints from the plane and one constraint from the box.  If 

the constraint chosen from the box lies on the plane such that all four constraints lie on the plane, 

Case 3, Type 1 suggests that the constraint will always be redundant.  The designer, therefore, 

must be instructed to select a constraint from the box that does not lie on the plane.  Recall also 

from Case 3, Type 1 that if the three parallel constraints selected from the plane all intersect at 

the same point in finite space as a disk or at infinity as parallel lines, one of the three constraints 

will be redundant. The designer, therefore, must also be instructed to select three constraints 

3 constraints 

from the box 

that don’t lie on 

the same plane

1 constraint from 

the plane that is 

not parallel to the 

constraints in the 

box 

3 constraints 

from the box 

that don’t lie on 

the same plane

1 constraint from 

the plane that is 

not parallel to the 

constraints in the 

box  

Figure 8.14: First sub-constraint space for the constraint space shown in Figure 8.13 corresponding to the 

third row of Table 8.1 
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from the plane that don‘t all intersect at the same point.  As long as these two conditions are 

satisfied, the designer will always appropriately select four non-redundant constraints where 

three are selected from the plane and one is selected from the box.  This second sub-constraint 

space is shown in Figure 8.15. 

 

Now suppose one chooses two constraints from the plane and two constraints from the box 

corresponding to the combination shown on the last row of Table 8.1.  Three different ways exist 

for choosing these lines with this combination. 

 

The first way that two constraints may be chosen from the plane and from the box of the 

constraint space is shown in the third sub-constraint space given in Figure 8.16.  This sub-

constraint space consists of two constraint sets, a plane of parallel constraint lines and a disk of 

constraint lines.  The plane of parallel lines lies within the box of lines within the system‘s 

constraint space.  The disk of lines lies within the plane of lines within the system‘s constraint 

space.  The center of the disk is separated from the intersection line of the two planes by a non-

zero distance, d.  If d=0, this sub-constraint space will become the constraint space of Case 3, 

Type 2.  The angle between the two intersecting planes, α, may be any value greater than zero 

degrees and any value less than 180 degrees.  Note that as this angle varies between these values, 

1 constraint 

from the box 

that does not lie 

on the plane

3 constraints from 

the plane that don’t 

intersect at the 

same point 

(including at infinity)

1 constraint 

from the box 

that does not lie 

on the plane

3 constraints from 

the plane that don’t 

intersect at the 

same point 

(including at infinity)

 

Figure 8.15: Second sub-constraint space for the constraint space shown in Figure 8.13 corresponding to 

the fourth row of Table 8.1 
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this plane may express every parallel line found in the box of parallel lines in the constraint 

space of the system.  The designer is instructed to select any two constraints from the plane of 

parallel lines and any two constraints from the disk of lines.  Even if the designer picks the 

intersection line as one of the constraints from the plane of parallel lines, the four constraints 

selected will always be non-redundant as long as these instructions are observed. 

 

The second way that two constraints may be chosen from the plane and from the box of the 

constraint space is shown in the fourth sub-constraint space given in Figure 8.17.  This sub-

constraint space consists of two constraint sets: a plane of parallel constraint lines, and a disk of 

constraint lines.  The plane of parallel lines lies within the box of lines within the system‘s 

constraint space and is parallel to the plane of the disk of lines.  The disk of lines lies within the 

plane of lines within the system‘s constraint space.  The plane of parallel lines is separated from 

the disk of parallel lines by a non-zero distance, h.  If h=0, this sub-constraint space will become 

the constraint space of Case 3, Type 1.  Note that as this distance varies between negative and 

positive infinity, this plane may express every parallel line found in the box of parallel lines in 

the constraint space of the system.  The designer is instructed to select any two constraints from 

the plane of parallel lines and any two constraints from the disk of lines.  If the designer observes 

these instructions, the four constraints selected will always be non-redundant. 

 

0  < α < 180

Any 2 parallel 

constraints 

from the plane

Any 2 constraints 

from the disk

d = 0

0  < α < 1800  < α < 180

Any 2 parallel 
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Any 2 constraints 
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d = 0d = 0d = 0

 

Figure 8.16: Third sub-constraint space for the constraint space shown in Figure 8.13 corresponding to 

the fifth row of Table 8.1 
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The third and final way that two constraints may be chosen from the plane and from the box of 

the constraint space is shown in the fifth sub-constraint space given in Figure 8.18.  This sub-

constraint space consists of two constraint sets, a plane of parallel constraint lines and another 

plane of parallel constraint lines.  The plane of parallel lines with lines that are parallel to the 

intersection line of the two planes lies within the box of lines within the system‘s constraint 

space.  The plane of parallel lines with parallel lines that are oriented an angle β from the 

intersection line of the two planes is coincident with the plane of lines within the system‘s 

constraint space.  This angle, β, must be greater than zero degrees but less than 180 degrees for 

this sub-constraint space to exist within the constraint space of this system.  If β equaled zero or 

180 degrees, this space would belong to the constraint space of Case 3, Type 5.  The angle 

between the two intersecting planes, α, may also be any value greater than zero degrees and any 

value less than 180 degrees.  Note that as this angle varies between these values, this plane 

expresses every parallel line found in the box of parallel lines in the constraint space of the 

system.  If α equals zero or 180 degrees, this space would belong to the constraint space in Case 

3, Type 1.  If the two planes of parallel lines were parallel and separated by a distance of h, the 

space would belong to Case 3, Type 6.  The designer is instructed to select any two constraints 

from both planes of parallel lines as shown in Figure 8.18.  Even if the designer selects the line 

of intersection between the planes as one of the constraints from the vertically oriented plane in 

h = 0

Any 2 parallel 

constraints 

from the plane

Any 2 constraints 

from the disk

h = 0h = 0

Any 2 parallel 

constraints 

from the plane

Any 2 constraints 

from the disk  

Figure 8.17: Fourth sub-constraint space for the constraint space shown in Figure 8.13 corresponding to 

the fifth row of Table 8.1 
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the figure, the four constraints selected will always be non-redundant if these instructions are 

observed. 

 

Every sub-constraint space has now been found that instructs the designer how to select four 

constraints from the constraint space of Figure 8.13 such that they will be non-redundant.  No 

combination of four non-redundant constraints from within this system exists that doesn‘t belong 

to one of these five sub-constraint spaces. 

 

The author used this type of logic to determine all the sub-constraint spaces for every constraint 

space within Case 4.  The sub-constraint spaces will be provided and described later with each 

constraint space presented in this chapter.  Note, however, that selecting sub-constraint spaces is 

somewhat subjective.  Multiple approaches exist for visually representing all the ways non-

redundant constraints may be selected from a constraint space.  All that is important is that the 

spaces presented include every combination of non-redundant constraints.  The author developed 

what he believes to be the fewest number of sub-constraint spaces with the fewest and clearest 

instructions for each constraint space. 

 

Finally, the reader may wonder why the concept of sub-constraint space is surfacing now with 

Case 4 constraint spaces and why sub-constraint spaces were never an issue with the first three 

0  < α < 180

0  < β < 180

Any 2 parallel 

constraints 

from the plane

Any 2 parallel 

constraints 

from the plane

0  < α < 1800  < α < 180
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constraints 
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constraints 

from the plane

 

Figure 8.18: Fifth sub-constraint space for the constraint space shown in Figure 8.13 corresponding to the 

fifth row of Table 8.1. 
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cases discussed in Chapter 7.  The answer is that all the constraint spaces within the first three 

cases are so simple that they only have a single sub-constraint space and this sub-constraint 

space is identical to its constraint space.  Recall that for these first three cases, instructions were 

provided that aided the designer in selecting non-redundant constraints, but there was always 

only one way to present these instructions for selecting every possible combination of non-

redundant constraints and it was always best visually represented using the constraint space 

itself.  Case 4 constraint spaces are, however, much more complicated and may have multiple 

spaces from which different combinations of non-redundant constraints may be selected as was 

recently demonstrated. 

 

It will also be shown later that the sub-constraint spaces of Cases 5 are the constraint spaces and 

sub-constraint spaces of Case 4.  The sub-constraint spaces of Case 6 are the constraint spaces of 

Case 5, the constraint spaces of Case 4, and the sub-constraint spaces of Case 4.  This concept 

will become clear in Chapter 10. 

 

8.3 Case 4: 

This section describes the fourth case of 6.  The fourth case consists of all systems that contain 

four non-redundant constraints.  It has already been proven that 9 freedom spaces exist within 

this case.  These freedom spaces were described in detail in Section 8.1.  In this section, these 

freedom spaces will be reviewed briefly and their unique constraint spaces will be determined for 

all 9 types.  Sub-constraint spaces will also be described for every constraint space in this 

section. 

 

8.3.1 Case 4, Type 1: 

This section describes the unique constraint space with its sub-constraint spaces for a system 

with the freedom space described in Section 8.1.2 and shown in Figure 8.7.  For completeness it 

is shown again here in Figure 8.19.  Note that this freedom space consists entirely of pure 

rotational freedom lines.  There are no screws or pure translations. 
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In order to determine this freedom space‘s complementary constraint space, Blanding‘s Rule of 

Complementary Patterns may be applied to determine every constraint line that intersects every 

freedom line shown in the disk of the freedom space.  The resulting constraint space is shown in 

Figure 8.20.  It consists of two constraint sets, a plane (outlined in blue) that contains every 

constraint line on the plane and a sphere that contains every constraint line that intersects a point 

that lies on the plane of the other constraint set.  Another plane is also shown in the figure that 

intersects the planar constraint set at an angle of θ.  The purpose of this plane will become clear 

when the sub-constraint spaces of the system are described. 

 

Figure 8.19: Freedom space of Case 4, Type 1 

0 < θ < 1800 < θ < 1800 < θ < 180

 

Figure 8.20: Constraint space of Case 4, Type 1 
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Figure 8.21 shows how the freedom and constraint spaces of this system fit together.  The disk 

of the freedom space lies on the plane of the planar constraint set and its center point is 

coincident with the center point of the spherical constraint set. 

 

Four sub-constraint spaces exist within this constraint space.  The first is shown in Figure 8.22.  

It consists of two constraint sets, a plane of all constraint lines that lie on the plane and a sphere 

of constraint lines that intersect at a point on the plane.  Instructions for choosing the non-

redundant constraints are included in the figure. 

0 < θ < 1800 < θ < 1800 < θ < 1800 < θ < 180

 

Figure 8.21: Freedom space (red) and constraint space (blue) of Case 4, Type 1 together. 

0 < θ < 180

1 constraint on 

the plane that 

does not 

intersect the 

sphere’s center 

point
3 constraints 

from the sphere 

that don’t lie on 

the same plane

0 < θ < 1800 < θ < 1800 < θ < 1800 < θ < 180

1 constraint on 

the plane that 

does not 

intersect the 

sphere’s center 

point
3 constraints 

from the sphere 

that don’t lie on 

the same plane

 

Figure 8.22: First sub-constraint space of Case 4, Type 1. 
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The second sub-constraint space is shown in Figure 8.23.  It consists of two constraint sets, a 

disk of constraint lines on the vertical plane and a disk of constraint lines on the horizontal plane 

shown in the figure.  The disk on the vertical plane lies on the planar constraint set from the 

system‘s constraint space and its center point must lie a non-zero distance, d, from the 

intersection line of the two planes.  As long as this requirement is met, this disk may be located 

anywhere on this plane.  If d=0, the space would belong to either Case 3, Type 3 or Case 3, Type 

4 depending on where the disk‘s center point lies with respect to the center point of the other disk 

on the intersection line.  The disk that lies on the horizontal plane lies within the spherical 

constraint set from the system‘s constraint space.  As the angle, θ, between these two planes is 

varied between zero and 180 degrees, this disk represents every constraint line within the 

spherical constraint set from the system‘s constraint space.  Instructions for choosing the non-

redundant constraints are included in the figure. 

 

The third sub-constraint space is shown in Figure 8.24.  It consists of two constraint sets, a plane 

of parallel lines on the vertical plane and a disk of constraint lines on the horizontal plane shown 

in the figure.  The parallel lines on the vertical plane lie within the planar constraint set of the 

system‘s constraint space and are oriented an angle α from the intersection line of the two planes.  

This angle is allowed to vary between zero and 180 degrees.  If α=0 or 180 degrees, the space 

becomes the constraint space of Case 3, Type 2.  The disk that lies on the horizontal plane lies 

0  < θ < 180
d = 0

2 constraints 

from any disk 

on the plane

2 constraints 

from the disk

0  < θ < 180
d = 0

0  < θ < 1800  < θ < 180
d = 0d = 0

2 constraints 

from any disk 

on the plane

2 constraints 

from the disk

 

Figure 8.23: Second sub-constraint space of Case 4, Type 1. 



 219 

within the spherical constraint set from the system‘s constraint space.  As the angle θ between 

these two planes is varied between zero and 180 degrees, this disk represents every constraint 

line within the spherical constraint set from the system‘s constraint space.  Instructions for 

choosing the non-redundant constraints are included in the figure. 

 

The fourth and final sub-constraint space of Case 4, Type 1 is shown in Figure 8.25.  It consists 

of two constraint sets, a plane of all constraint lines that lie on the plane and a sphere of 

constraint lines that intersect at a point on the plane.  Instructions for choosing the non-redundant 

constraints are included in the figure. 

0  < θ < 1800  < α < 180

2 parallel constraints 

from the plane 

2 constraints from 

the disk

0  < θ < 1800  < α < 180 0  < θ < 1800  < θ < 1800  < α < 1800  < α < 180

2 parallel constraints 

from the plane 

2 constraints from 

the disk

 

Figure 8.24: Third sub-constraint space of Case 4, Type 1. 

0 < θ < 1801 constraint from the 

sphere that doesn’t 

lie on the vertical 

plane 3 constraints 
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plane that don’t 

intersect at the 

same point

0 < θ < 1800 < θ < 1800 < θ < 1801 constraint from the 

sphere that doesn’t 

lie on the vertical 

plane 3 constraints 

from the vertical 

plane that don’t 

intersect at the 

same point

 

Figure 8.25: Fourth sub-constraint space of Case 4, Type 1. 
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8.3.2 Case 4, Type 2: 

This section describes the unique constraint space with its sub-constraint spaces for a system 

with the freedom space described in Section 8.1.1 and shown in Figure 8.3.  For completeness, 

it is shown again here in Figure 8.26.  Note that this freedom space consists entirely of pure 

rotational freedom lines with a single pure rotational hoop.  There are no screws in the system. 

 

In order to determine this freedom space‘s complementary constraint space, Blanding‘s Rule of 

Complementary Patterns may be applied to determine every constraint line that intersects every 

freedom line shown in the freedom space.  The resulting constraint space is the space studied in 

Section 8.2 and is shown again here in Figure 8.27.  It consists of two constraint sets, a plane 

(outlined in blue) that contains every constraint line on the plane and a box that contains every 

parallel constraint line in three-space. 

 

Figure 8.26: Freedom space of Case 4, Type 2 

 

Figure 8.27: Constraint space of Case 4, Type 2 
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Figure 8.28 shows how the freedom and constraint spaces of this system fit together.  The plane 

of parallel lines in the freedom space is coincident with the plane of the planar constraint set. 

 

From Section 8.2 five sub-constraint spaces within the constraint space of this system were 

found and described.  For completeness, they will again be shown here in Figure 8.29 through 

Figure 8.33.  For a detailed description of their geometry review Section 8.2. 

 

 

Figure 8.28: Freedom space (red) and constraint space (blue) of Case 4, Type 2 together. 
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Figure 8.29: First sub-constraint space of Case 4, Type 2 
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1 constraint 

from the box 
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intersect at the 
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(including at infinity)

1 constraint 

from the box 
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intersect at the 

same point 

(including at infinity)

 

Figure 8.30: Second sub-constraint space of Case 4, Type 2 

0  < α < 180

Any 2 parallel 

constraints 

from the plane

Any 2 constraints 

from the disk

d = 0

0  < α < 1800  < α < 180
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Figure 8.31: Third sub-constraint space of Case 4, Type 2 

h = 0

Any 2 parallel 

constraints 

from the plane

Any 2 constraints 

from the disk

h = 0h = 0

Any 2 parallel 
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from the plane
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from the disk  

Figure 8.32: Fourth sub-constraint space of Case 4, Type 2 
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8.3.3 Case 4, Type 3: 

This section describes the unique constraint space with its sub-constraint spaces for a system 

with the freedom space described in Section 8.1.2 and shown in Figure 8.11.  For completeness, 

it will be shown again here in Figure 8.34.  In this figure the two skew pure rotational freedom 

lines are arbitrarily shown as extreme generators of the cylindroid and therefore, have a 90 

degree skew angle with respect to each other.  As discussed earlier, however, this condition 

doesn‘t necessarily have to be true to belong to this particular type.  All that matters is that the 

pure rotational freedom lines are skew with respect to each other. 

0  < α < 180

0  < β < 180

Any 2 parallel 

constraints 

from the plane

Any 2 parallel 

constraints 

from the plane

0  < α < 1800  < α < 180

0  < β < 1800  < β < 180

Any 2 parallel 

constraints 

from the plane

Any 2 parallel 

constraints 

from the plane

 

Figure 8.33: Fifth sub-constraint space of Case 4, Type 2 

 

Figure 8.34: Freedom space of Case 4, Type 3 
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In order to determine this freedom space‘s complementary constraint space, Blanding‘s Rule of 

Complementary Patterns may be applied to determine every constraint line that intersects the two 

pure rotational freedom lines shown in the cylindroid freedom space.  One can correctly deduce 

that if all the constraint lines are found that complement these two pure rotational freedom lines, 

the other screws in the cylindroid will also be allowable motions since they are all linear 

combinations of the two pure rotations.  The constraint space that complements the entire 

freedom space is, therefore, shown in Figure 8.35.  This space is almost identical to the freedom 

space of pure rotational freedom lines from Case 2, Type 3 shown and described in Figure 7.27 

of Chapter 7.  The only difference between this constraint space and the freedom space from 

Case 2, Type 3 is that this constraint space has no constraint hoop representing a constraint 

capable of pure torque (q=∞). 

 

Figure 8.36 shows how the freedom and constraint spaces of this system fit together.  The two 

skew pure rotations are the lines (thick dashed black) that run through the center of the two 

constraint disk tubes. 

0 < α < 180

0 < β < 180

h = 0

0 < α < 180

0 < β < 180

h = 0

0 < α < 180

0 < β < 180

h = 0

0 < α < 1800 < α < 180

0 < β < 1800 < β < 180

h = 0h = 0

 

Figure 8.35: Constraint space of Case 4, Type 3 
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Seven sub-constraint spaces exist within this constraint space.  The first is shown in Figure 8.37.  

It consists of two constraint sets, a plane of parallel constraint lines and a disk of constraint lines.  

The angle, α, between the plane of this disk and the plane of parallel constraint lines must be 

greater than zero degrees but less than 180 degrees.  Instructions for choosing the non-redundant 

constraints are included in the figure. 

0 < α < 180

0 < β < 180

h = 0

0 < α < 180

0 < β < 180

h = 0

0 < α < 180

0 < β < 180

h = 0

0 < α < 180

0 < β < 180

h = 0

0 < α < 1800 < α < 180

0 < β < 1800 < β < 180

h = 0h = 0

 

Figure 8.36: Freedom space (red and green) and constraint space (blue) of Case 4, Type 3 together. 
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The second sub-constraint space is shown in Figure 8.38.  It consists of two constraint set disks 

as shown in the figure. Instructions for choosing the non-redundant constraints are also included. 

0 < α < 180

h = 0

Any 2 constraints 

from the plane of 

parallel lines

Any 2 constraints 

from the disk

0 < α < 180

h = 0

0 < α < 180

h = 0

0 < α < 1800 < α < 180

h = 0h = 0
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from the plane of 

parallel lines

Any 2 constraints 

from the disk

 

Figure 8.37: First sub-constraint space of Case 4, Type 3 

α1 = 0

α2 = 0

α3 = 0
h = 0
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from the disk
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α1+α2+α3 = 180

α1 = 0α1 = 0

α2 = 0α2 = 0

α3 = 0α3 = 0
h = 0
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α1+α2+α3 = 180α1+α2+α3 = 180

 

Figure 8.38: Second sub-constraint space of Case 4, Type 3 
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The third sub-constraint space is shown in Figure 8.39.  It consists of three constraint sets, two 

disks and a plane of parallel constraint lines. Instructions for choosing the non-redundant 

constraints are shown in the figure. 

 

The fourth sub-constraint space is shown in Figure 8.40.  It consists of three constraint set disks, 

two of which are intersected at their center points by the same dashed black line shown in the 

figure. The disk intersected at its center point by the other dashed black line shares two lines with 

these two disks.  These shared lines shown in orange are the intersection lines of the planes 

shown in the figure.  The instructions for choosing non-redundant constraints are also shown in 

this figure. 
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h = 0
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α2 = 0α2 = 0
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skew to the 
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from the plane of 

parallel lines

α1+α2+α3 = 180α1+α2+α3 = 180

 

Figure 8.39: Third sub-constraint space of Case 4, Type 3 
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The fifth sub-constraint space is shown in Figure 8.41.  It contains the same constraint sets as 

the sets within the fourth sub-constraint space, but it is considered a different sub-constraint 

space because it consists of a different set of instructions for guiding the designer in selecting a 

different set of non-redundant constraints. 

α1 = 0

α2 = 0

α3 = 0

0 < β < 180

h = 0

Any 2 constraints 

from the disk

1 constraint 

from the disk 

that’s not on 
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1 constraint from the 

disk that’s not on the 

shared line

α1+α2+α3 = 180

α1 = 0α1 = 0

α2 = 0α2 = 0

α3 = 0α3 = 0

0 < β < 1800 < β < 180

h = 0h = 0

Any 2 constraints 

from the disk

1 constraint 

from the disk 

that’s not on 

the shared 
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1 constraint from the 

disk that’s not on the 

shared line

α1+α2+α3 = 180α1+α2+α3 = 180

 

Figure 8.40: Fourth sub-constraint space of Case 4, Type 3.  Shared lines are dashed orange. 
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The sixth sub-constraint space is shown in Figure 8.42.  It consists of three constraint set disks 

all of which are intersected at their center points by the same dashed black line as shown in the 

figure.  The instructions for choosing non-redundant constraints are also shown in this figure. 

α1 = 0

α2 = 0

α3 = 0

0 < β < 180

h = 0

1 constraint from 

the disk that does 
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the disk that does 
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the disk that 
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α1 = 0α1 = 0

α2 = 0α2 = 0

α3 = 0α3 = 0
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h = 0h = 0
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that contains 2 

constraints
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the disk that does 

not lie on the 

shared line with 
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Figure 8.41: Fifth sub-constraint space of Case 4, Type 3.  Shared lines are dashed orange. 
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The seventh sub-constraint space is shown in Figure 8.43.  It consists of four constraint set 

disks, two of which are intersected at their center points by one of the dashed black lines.  The 

other two disks are intersected at their center points by the other dashed black line as shown in 

the figure.  Each disk shares a line with the two disks on the opposite dashed black line.  These 

shared lines shown in orange are the intersection lines of the planes shown in the figure.  

Instructions for choosing the non-redundant constraints are also shown in this figure. 
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α1+α2+α3+α4 = 180

 

Figure 8.42: Sixth sub-constraint space of Case 4, Type 3 
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8.3.4 Case 4, Type 4: 

This section describes the unique constraint space with its sub-constraint spaces for a system 

with the freedom space described in Section 8.1.1 and shown in Figure 8.2.  For completeness, 

it is shown again here in Figure 8.44.  In this freedom space, the pure rotational freedom line is 

coincident with the screw lines.  All of these lines are oriented in the same direction as the pure 

translation. 

h = 0

α1 = 0

α2 = 0

α3 = 0
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α3 = 0α3 = 0

β1 = 0β1 = 0

β2 = 0β2 = 0

β3 = 0β3 = 0
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from each disk 
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other

α1+α2+α3 = 180α1+α2+α3 = 180

β1+ β2+ β3 = 180
 

Figure 8.43: Seventh sub-constraint space of Case 4, Type 3.  Shared lines are dashed orange. 
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In order to determine this freedom space‘s complementary constraint space, Blanding‘s Rule of 

Complementary Patterns may be applied to determine every constraint line that intersects the 

pure rotational freedom line and the pure rotational hoop at least once.  If these two pure 

rotational twists are complemented by constraint lines, one can also deduce that the same 

constraint lines will also complement the screw lines since the screws are linear combinations of 

these two pure rotational twists.  The resulting constraint space is shown in Figure 8.45.  The 

constraint space consists of an infinite number of disks of constraint lines.  The plane of each 

disk is parallel to each other and the line that intersects all the disks through their center points is 

perpendicular to the planes of these disks. 

 

Figure 8.44: Freedom space of Case 4, Type 4 

 

Figure 8.45: Constraint space of Case 4, Type 4 
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Figure 8.46 shows how the freedom and constraint spaces of this system fit together.  The line 

that intersects all the disks at their center points is coincident with the line of twists in the 

freedom space. 

 

Five sub-constraint spaces exist within this constraint space.  The first is shown in Figure 8.47.  

It consists of two planar constraint sets of parallel lines.  Every parallel constraint line on either 

of these planes is orthogonal to the intersection line of the two planes.  The angle, θ, between the 

two planes of parallel constraint lines must be greater than zero degrees and less than 180 

degrees.  If this angle equals one of these values, the space becomes Case 2, Type 2.  Instructions 

for choosing the non-redundant constraints from this sub-constraint space are included in the 

figure. 

 

Figure 8.46: Freedom space (red and green) and constraint space (blue) of Case 4, Type 4 together. 
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The second sub-constraint space is shown in Figure 8.48.  It consists of two constraint set disks. 

The planes of these disks are parallel and separated by a non-zero distance, d. Instructions for 

choosing the non-redundant constraints are also included in the figure. 

 

The third sub-constraint space is shown in Figure 8.49.  It consists of three constraint sets, a disk 

and two planes of parallel constraint lines.  The parallel lines on each plane are perpendicular to 

the planes‘ intersection line.  The plane of the disk is also perpendicular to this intersection line.  
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from the plane of 
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Any 2 constraints 
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parallel lines
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from the plane of 
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Figure 8.47: First sub-constraint space of Case 4, Type 4 
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Figure 8.48: Second sub-constraint space of Case 4, Type 4 
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Instructions for choosing the four non-redundant constraints from this sub-constraint space are 

shown in the figure. 

 

The fourth sub-constraint space is shown in Figure 8.50.  It consists of three constraint sets, two 

disks and a plane containing parallel lines.  The planes of the disks are parallel and are separated 

by a non-zero distance, d, as shown in the figure. Instructions for choosing the non-redundant 

constraints are also shown. 
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Figure 8.49: Third sub-constraint space of Case 4, Type 4 
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The fifth sub-constraint space is shown in Figure 8.51.  It consists of four constraint set disks.  

The planes of these four disks are parallel and the dashed black line that passes through their 

center points is perpendicular to them.  Instructions are provided for guiding the designer in 

selecting constraints that are non-redundant. 

 

 

d = 0

Any 2 constraints 

from the plane of 

parallel lines

1 constraint 

from the 

disk that 

doesn’t lie 

on the 

plane of 

parallel 

lines1 constraint 

from the 

disk that 

doesn’t lie 

on the 

plane of 

parallel 

lines

d = 0d = 0d = 0

Any 2 constraints 

from the plane of 

parallel lines

1 constraint 

from the 

disk that 

doesn’t lie 

on the 

plane of 

parallel 

lines1 constraint 

from the 

disk that 

doesn’t lie 

on the 

plane of 

parallel 

lines  

Figure 8.50: Fourth sub-constraint space of Case 4, Type 4 
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Figure 8.51: Fifth sub-constraint space of Case 4, Type 4 
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8.3.5 Case 4, Type 5: 

This section describes the unique constraint space with its sub-constraint spaces for a system 

with the freedom space described in Section 8.1.1 and shown in Figure 8.5.  For completeness, 

it is shown again here in Figure 8.52.  In this freedom space, the pure rotational freedom line is 

parallel to screw lines on a common plane.  A pure translation also points in a direction that is 

not perpendicular to this plane. 

 

In order to determine this freedom space‘s complementary constraint space, Blanding‘s Rule of 

Complementary Patterns may be applied to determine every constraint line that intersects the 

pure rotational freedom line and the pure rotational hoop at least once.  If these two pure 

rotational twists are complemented by constraint lines, one can also deduce that the same 

constraint lines will also complement the screw lines since the screws are linear combinations of 

these two pure rotational twists.  The resulting constraint space is shown in Figure 8.53.  The 

constraint space consists of an infinite number of disks of constraint lines.  The plane of each 

disk is parallel to the plane of the other disks, but the line that intersects all the disks through 

 

Figure 8.52: Freedom space of Case 4, Type 5 
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their center points is not perpendicular to the planes of these disks.  If this line were 

perpendicular to the plane of these disks, the constraint space would belong to Case 4, Type 4. 

 

Figure 8.54 shows how the freedom and constraint spaces of this system fit together.  The line 

that intersects all the disks at their center points is coincident with the pure rotational freedom 

line in the freedom space. 

 

Figure 8.53: Constraint space of Case 4, Type 5 

 

Figure 8.54: Freedom space (red and green) and constraint space (blue) of Case 4, Type 5 together. 
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There are five sub-constraint spaces within this constraint space.  The first is shown in Figure 

8.55.  It consists of two planar constraint sets of parallel lines.  The parallel constraint lines that 

lie on the vertical plane intersect the intersection line of the two planes at an angle of α as shown 

in the figure.  The parallel constraint lines that lie on the horizontal plane intersect the 

intersection line of the two planes at an angle of β also shown in the figure.  Both of these angles 

must be greater than zero degrees and less than 180 degrees.  If one of these angles equals zero 

or 180 degrees, the space belongs to Case 4, Type 2.  If both angles simultaneously equal zero or 

180 degrees, the space belongs to Case 3, Type 5.  If these two angles simultaneously equal 90 

degrees, the space belongs to Case 4, Type 4.  The angle, θ, between the two planes of parallel 

constraint lines must also be greater than zero degrees and less than 180 degrees.  If θ equals zero 

or 180 degrees, the space becomes Case 3, Type 1.  Instructions for choosing the non-redundant 

constraints from this sub-constraint space are included in the figure. 

 

The second sub-constraint space is shown in Figure 8.56.  It consists of two constraint set disks. 

The planes of these disks are parallel and separated by a non-zero distance, d. The instructions 

for choosing non-redundant constraints are also included in the figure. 
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0 < β < 180
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0 < α < 180

0 < β < 1800 < β < 180

0  < θ < 180

0 < α < 180

0  < θ < 1800  < θ < 1800  < θ < 180

0 < α < 1800 < α < 180

Note: α and β cannot simultaneously 
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Note: α and β cannot simultaneously 

be equal to 90
Any 2 constraints 

from the plane of 

parallel lines

Any 2 constraints 

from the plane of 

parallel lines

 

Figure 8.55: First sub-constraint space of Case 4, Type 5. 
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The third sub-constraint space is shown in Figure 8.57.  It consists of three constraint sets, a disk 

and two planes of parallel constraint lines.  The parallel constraint lines that lie on the vertical 

plane intersect the intersection line of the two planes at an angle of α.  The parallel constraint 

lines that lie on the horizontal plane intersect the intersection line of the two planes at an angle of 

β.  Both of these angles must be greater than zero degrees and less than 180 degrees.  They may 

also not simultaneously both equal 90 degrees.  The plane of the disk is perpendicular to the 

vectors that result from taking the cross product of constraint orientation vectors ( f


) from the 

planes.  Instructions for choosing the four non-redundant constraints from this sub-constraint 

space are shown in the figure. 

Any 2 constraints 

from the disk

Any 2 constraints 

from the disk

d = 0 

Any 2 constraints 

from the disk

Any 2 constraints 

from the disk

d = 0 d = 0 d = 0 

 

Figure 8.56: Second sub-constraint space of Case 4, Type 5. 
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The fourth sub-constraint space is shown in Figure 8.58.  It consists of three constraint sets, two 

disks and a plane containing parallel lines.  The planes of the disks are parallel and are separated 

by a non-zero distance, d, as shown in the figure.  The parallel lines on the plane are parallel to 

the planes of these disks.  Instructions for choosing the non-redundant constraints are also 

shown. 
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Figure 8.57: Third sub-constraint space of Case 4, Type 5 
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The fifth sub-constraint space is shown in Figure 8.59.  It consists of four constraint set disks.  

The planes of these four disks are parallel and the dashed black line that passes through their 

center points is not perpendicular to them.  Instructions are provided for guiding the designer in 

selecting constraints that are non-redundant. 
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Figure 8.58: Fourth sub-constraint space of Case 4, Type 5 
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8.3.6 Case 4, Type 6: 

This section describes the unique constraint space with its sub-constraint spaces for a system 

with the freedom space described in Section 8.1.1 and shown in Figure 8.4.  For completeness it 

is shown again here in Figure 8.60.  In this freedom space only a single pure rotational freedom 

line at infinity shown as a pure rotational hoop exists.  A plane of parallel screws of equal pitch 

value is perpendicular to the direction of this pure translation. 

 

Finding this system‘s complementary constraint space is not as easy as it has been for past types.  

For this system there aren‘t two independent pure rotational freedom lines to apply Blanding‘s 

Rule of Complementary Patterns to for finding the constraint lines.  It is known that every 

constraint line does intersect the pure rotational hoop at infinity and, therefore, must lie on planes 

with normal vectors that are parallel to the normal vector of the hoop.  But these constraint lines 

must also complement the planar set‘s parallel screws in accordance with Equation (3.13) from 

Chapter 3.  The constraint space that complements this freedom space is, therefore, shown in 

Figure 8.61.  It consists of an infinite number of planar constraint sets each of which contains an 

infinite number of parallel constraint lines.  A middle plane of parallel constraint lines exists that 

is coincident with the plane of screws from the freedom space.  The parallel constraint lines on 

this plane are orthogonal to the screw lines.  The orientation angle, θ, with respect to the 

direction of the screw lines (dashed black line) for the parallel constraint lines separated from the 

middle plane by a distance, d, may be solved using Equation (3.13) for a given pitch value, p, of 

the screws from the freedom space.  The planes infinitely far away from the middle plane each 

contain parallel constraint lines that approach being parallel with respect to each other and are 

Figure 8.59: Fifth sub-constraint space of Case 4, Type 5 

 

Figure 8.60: Freedom space of Case 4, Type 6 
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orthogonal to the parallel constraint lines on the middle plane.  Seen another way, the constraint 

space of this system is essentially an infinite number of hyperbolic paraboloids stacked on top of 

each other.  The particular constraint space shown in Figure 8.61 is for a freedom space of 

screws with a negative pitch value.  This observation must be the case since the constraint lines 

form right-handed ribbons. 

 

Figure 8.62 shows how the freedom and constraint spaces of this system fit together.  The plane 

of parallel screws from the freedom space is coincident with the middle plane of parallel 

constraint lines from the constraint space. 

Middle plane

d

∞

-∞

θ

p = d*tan θ

Middle plane

d

∞

-∞

θ

p = d*tan θ

 

Figure 8.61: Constraint space of Case 4, Type 6  
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Two sub-constraint spaces exist within this constraint space.  The first is shown in Figure 8.63.  

It consists of three planar constraint sets of parallel constraint lines.  Instructions for choosing the 

non-redundant constraints from this sub-constraint space are included in the figure. 

Middle plane

∞

-∞

Middle plane

∞

-∞

 

Figure 8.62: Freedom space (red and green) and constraint space (blue) of Case 4, Type 6 together. 
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The second sub-constraint space is shown in Figure 8.64.  It consists of four planar constraint 

sets of parallel constraint lines.  Instructions for choosing the non-redundant constraints are 

included in the figure. 

Pick any 2 constraints from any plane in the 

constraint space and then pick any 1 constraint from 

any two of the other planes

Any 2 constraints

Any 1 constraint

Any 1 constraint

Pick any 2 constraints from any plane in the 

constraint space and then pick any 1 constraint from 

any two of the other planes

Any 2 constraints

Any 1 constraint

Any 1 constraint

 

Figure 8.63: First sub-constraint space of Case 4, Type 6 
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Figure 8.64: Second sub-constraint space of Case 4, Type 6 
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8.3.7 Case 4, Type 7: 

This section describes the unique constraint space with its sub-constraint spaces for a system 

with the freedom space described in Section 8.1.2 and shown in Figure 8.10.  For completeness, 

it is shown again here in Figure 8.65.  This freedom space is a cylindroid of twists with a 

principal generator that is a pure rotational freedom line.  The rest of the twists within the 

cylindroid are screws with finite non-zero pitch values. 

 

In order to determine this freedom space‘s complementary constraint space, note that apply 

Blanding‘s Rule of Complementary Patterns alone will not be sufficient.  This is because there is 

only a single pure rotational freedom line within the freedom space and in order to find the 

system‘s complete constraint space, two independent twists from within the cylindroid must be 

found.  Consider the cylindroid‘s two principal generators.  Blanding‘s Rule of Complementary 

Patterns suggests that every constraint line must simultaneously intersect the pure rotational 

freedom principal generator at least once.  These constraint lines must also satisfy Equation 

(3.13) for the other screw principal generator.  The resulting constraint space that satisfies both 

of these conditions is shown in Figure 8.66. 

 

Figure 8.65: Freedom space of Case 4, Type 7 
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The constraint space consists of an infinite number of constraint disks and a plane of parallel 

constraint lines.  The disks translate as they rotate along an axis that lies on the plane of parallel 

lines.  The rate that the disks translate as they rotate depends on the pitch of the principal 

generator screw within the freedom space.  These disks behave exactly like the lines that lie on 

the surface of orthogonal ribbons discussed in Chapter 7.  One can, therefore, deduce from the 

findings in Appendix F that the double derivative of the rate that the disks translate as they 

rotate with respect to their position along the axis that they‘re translating along is a constant, K, 

that relates to the pitch, p, of the principal generator screw as Equation (F.8).  It is also 

important to note that every point along the axis of the rotating disks is a center point for a single 

disk that lies on a unique plane.  The constraint space‘s central disk lies on a plane that is 

orthogonal to the plane of parallel constraint lines, and the disks that are infinitely far away from 

this central disk lie on planes that approach the plane of the parallel constraint lines as shown in 

the figure. 
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∞
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Figure 8.66: Constraint space of Case 4, Type 7 
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Figure 8.67 shows how the freedom and constraint spaces of this system fit together.  The axis 

line of the rotating disks within the constraint space is coincident with the pure rotational 

principal generator line within the freedom space.  The other screw principal generator line is 

orthogonal to the plane of the central disk within the constraint space and intersects it at its 

center point. 

 

Five sub-constraint spaces exist within this constraint space.  The first is shown in Figure 8.68.  

It consists of a planar constraint set of parallel lines and two constraint set disks.  These disks 

may be any two disks from within the constraint space of the system and don‘t have to be the 

two disks arbitrarily represented in the figure.  Instructions for choosing the non-redundant 

constraints from this sub-constraint space are included in the figure. 

∞

∞

∞

∞

∞

∞

 

Figure 8.67: Freedom space (red and green) and constraint space (blue) of Case 4, Type 7 together. 
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The second sub-constraint space is shown in Figure 8.69.  It is identical in geometry to the first 

sub-constraint space but has different instructions for choosing a different set of non-redundant 

constraints and is, therefore, its own sub-constraint space.  Again, any two disks from within the 

constraint space may be selected by the designer and not just the two disks shown in the figure.  

Instructions for choosing the non-redundant constraints are given in the figure. 
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Figure 8.68: First sub-constraint space of Case 4, Type 7 
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The third sub-constraint space is shown in Figure 8.70.  It consists of a planar constraint set of 

parallel lines and three constraint set disks.  These disks may be any three disks from within the 

constraint space of the system and don‘t have to be the three disks arbitrarily represented in the 

figure.  Instructions for choosing the four non-redundant constraints from this sub-constraint 

space are shown in the figure. 

Any 2 constraints 
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Figure 8.69: Second sub-constraint space of Case 4, Type 7 
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The fourth sub-constraint space is shown in Figure 8.71.  It consists of three constraint set disks.  

These disks may be any three disks from within the constraint space of the system and don‘t 

have to be the three disks arbitrarily represented in the figure.  Instructions for choosing the non-

redundant constraints are given in the figure. 
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Figure 8.70: Third sub-constraint space of Case 4, Type 7 
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The fifth sub-constraint space is shown in Figure 8.72.  It consists of four constraint set disks.  

These disks may be any four disks from within the constraint space of the system and not just the 

four disks arbitrarily represented in the figure.  Instructions are provided in the figure for guiding 

the designer in selecting constraints that are non-redundant.  Note also that if each of the four 

constraints is selected from the same location within its respective disk, one of these constraints 

will be redundant since all four constraints will belong to a ribbon space and will lie on the 

surface of a hyperbolic paraboloid from Case 3.  If, for instance, every constraint line selected is 

at the location within its disk such that it is perpendicular to the axis line of the constraint space, 

the four constraints selected will belong to an orthogonal ribbon space. 
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Figure 8.71: Fourth sub-constraint space of Case 4, Type 7 
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8.3.8 Case 4, Type 8: 

This section describes the unique constraint space with its sub-constraint spaces for a system 

with the freedom space described in Section 8.1.2 and shown in Figure 8.8.  For completeness, 

it is shown again here in Figure 8.73.  This freedom space is a disk of screws that all have the 

same finite, non-zero pitch value. 

 

In order to determine this freedom space‘s complementary constraint space, note that there are 

no pure rotational freedom lines to apply Blanding‘s Rule of Complementary Patterns to.  One 
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Figure 8.72: Fifth sub-constraint space of Case 4, Type 7 

 

Figure 8.73: Freedom space of Case 4, Type 8 
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must, therefore, rely on a completely different approach for finding this system‘s constraint 

space.  In a way, however, this system‘s constraint space has already been found.  Recall from 

Section 7.2.1 in Chapter 7 that Equation (7.1) relates the pitch of a twist that complements a 

disk of constraint lines to parameters that define its position with respect to that disk.  From 

symmetry, the same argument presented in that section is used for determining the reverse 

scenario of a constraint line that complements a disk of twists that all have the same finite, non-

zero pitch value, p.  This reverse scenario is shown in Figure 8.74 (Note how this figure 

compares with Figure 7.13 from Chapter 7).  From the conclusions in Chapter 7, one may 

deduce that only a constraint line that intersects the plane of the disk of screws at an angle of, α, 

that is also perpendicular to one of these screw lines and is a distance L away from the center 

point of this disk will complement the system‘s freedom space according to Equation (7.1) 

which is given again here as 

 

 

 

tanLp  . (8.22) 

L
α p

L
α p

 

Figure 8.74: The parameters for a constraint line that complements a disk of screws that have the same 

pitch value, p. 
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Since the disk of screws is symmetric about the dashed black line shown in Figure 8.74, note 

that every constraint line on the surface of a circular hyperboloid with a central circular cross-

sectional radius of L will exist.  In fact, since the pitch, p, of the disk of screws is a constant 

value for every freedom space of this case and type, Equation (8.22) suggests that at every 

distance of L away from the center point of this disk, there is a unique circular hyperboloid of 

constraint lines with fixed and equal angles, α, that will exist within the system‘s constraint 

space.  The constraint space of this system is, therefore, an infinite number of nested 

hyperboloids.  The inner most hyperboloid has a radius, L, equal to zero and is in fact a single 

constraint line that is perpendicular to the disk of screws and intersects them at their center point.  

The hyperboloid‘s angle, α, changes as the radius, L, gets larger.  As this radius approaches 

infinity, the circular hyperboloid gradually collapses onto a plane of constraint lines.  This 

concept is shown in Figure 8.75. 

 

Note, however, that the plane of constraint lines on the right side of the figure is not a part of this 

constraint space since L never actually reaches infinity.  The complete constraint space of this 

case and type may, therefore, be represented as shown in Figure 8.76. 

L=0 L=∞L=0 L=∞
 

Figure 8.75: Nested circular hyperboloids within the constraint space of Case 4, Type 8 for different 

values of L where L is the radius of the hyperboloid‘s smallest circular cross-section. 
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Another way to look at this constraint space is to consider an infinite number of orthogonal 

ribbons that rotate as they translate toward the central, vertical constraint line.  The axes of these 

infinite ribbons are coincident with the screw lines within the disk of the freedom space.  Part of 

one of these ribbons is shown in Figure 8.77.  The constraint space of this case and type, 

therefore, consists of both an infinite number of circular hyperboloids and an infinite number of 

hyperboloic paraboloids (where a=b in Equation (6.1)). 

 

Figure 8.76: Constraint space of Case 4, Type 8 
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Note that the orthogonal ribbon in the figure is a right-handed ribbon.  The reason for this fact is 

that it exists within the constraint space of a system with a freedom space that consists of a disk 

of screws that have negative pitch values.  Moreover, note that every hyperboloid shown in the 

constraint space in Figure 8.76 is also a right-handed hyperboloid.  In fact, because such nested 

hyperboloids are made up of right-handed ribbons, the author decided to name these 

hyperboloids right-handed hyperboloids.  If the pitch values of the screws within the freedom 

space disk had been positive, the orthogonal ribbons and the circular hyperboloids within the 

constraint space would have both been left-handed. 

 

An equation can now be derived that describes the complete constraint space of Case 4, Type 8.  

Recall from Chapter 7 that the equation for a circular hyperboloid is Equation (7.6).  If 

Equation (8.22) is substituted into Equation (7.6), one finds that for a given distance, L, from 

Axis of the 

orthogonal ribbon

Axis of the 

orthogonal ribbon

 

Figure 8.77: An example of a single orthogonal ribbon of constraint lines that exists within the constraint 

space of Case 4, Type 8. 
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the central point of the disk of screws, a nested circular hyperboloid will exist that contains an 

infinite ruling of constraint lines on its surface that is described by 

 

 

 

where p is the pitch of the disk of screws from the freedom space.  The equation of the entire 

constraint space is, therefore, Equation (8.23) for all real values of L where each value 

corresponds to a single circular hyperboloid. 

 

Figure 8.78 shows how the freedom and constraint spaces of this system fit together.  The 

central, vertical constraint line within the constraint space is perpendicular to the plane of the 

disk of screws from the freedom space and intersects it at its central point.  The plane of the 

nested hyperboloids‘ smallest circular cross-sections is the same plane as the disk of screws. 

1
2

2

2

22




p

z

L

yx
, (8.23) 

 

Figure 8.78: Freedom space (green) and constraint space (blue) of Case 4, Type 8 together. 
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Three sub-constraint spaces exist within this constraint space.  All three sub-constraint spaces 

look identical to their constraint space.  Each, however, has its own set of unique instructions for 

guiding the designer in selecting every possible set of non-redundant constraints from within the 

constraint space of the system.  The first is shown in Figure 8.79. 

 

The second sub-constraint space is shown in Figure 8.80. 
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Figure 8.79: First sub-constraint space of Case 4, Type 8 



 261 

 

The third sub-constraint space is shown in Figure 8.81. 
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Figure 8.80: Second sub-constraint space of Case 4, Type 8 
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8.3.9 Case 4, Type 9: 

This section describes the unique constraint space with its sub-constraint spaces for a system 

with the freedom space described in Section 8.1.2 and shown in Figure 8.12.  For completeness, 

it is shown again here in Figure 8.82.  This freedom space is a cylindroid of pure screws. 
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Figure 8.81: Third sub-constraint space of Case 4, Type 8 
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In order to determine this freedom space‘s complementary constraint space, note that there are 

no pure rotational freedom lines to apply Blanding‘s Rule of Complementary Patterns to.  One 

must, therefore, rely on a different approach for finding this system‘s constraint space.  If all the 

constraint lines are found that complement the cylindroid‘s two principal generators (or any 

other two independent twists within the cylindroid), the system‘s complete constraint space will 

have been found since every twist within the cylindroid is a linear combination of its two 

principal generators.  Suppose the two screw principal generators are oriented along the x- and y-

axes of a coordinate system.  Recall that principal generators always intersect at orthogonal 

angles.  Now recall from Figure 3.9 in Chapter 3 that a constraint line that intersects a screw 

line at an orthogonal angle is permitted by Equation (3.12).  One may, therefore, know that any 

line that intersects and is orthogonal to the principal generator along the y-axis that also 

simultaneously satisfies Equation (3.13) for the principal generator along the x-axis will be a 

constraint line within the system‘s constraint space.  These constraint lines make up an 

orthogonal ribbon with an axis along the y-axis as shown in Figure 8.83.  Note that the ribbon of 

constraint lines is a right-handed orthogonal ribbon.  This is because the principal generator 

screw along the x-axis has a negative pitch value for this figure. 

 

Figure 8.82: Freedom space of Case 4, Type 8 
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Also any line that intersects and is orthogonal to the principal generator along the x-axis that also 

simultaneously satisfies Equation (3.13) for the principal generator along the y-axis will be a 

constraint line within the system‘s constraint space.  These constraint lines also make up an 

orthogonal ribbon with an axis along the x-axis as shown in Figure 8.84.  Note that the ribbon of 

constraint lines is again a right-handed orthogonal ribbon.  This statement is true because the 

principal generator screw along the y-axis also has a negative pitch value for this figure. 
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Figure 8.83: An orthogonal ribbon within the constraint space of Case 4, Type 9 that complements a 

cylindroid of pure screws with principal generators aligned along the x- and y-axes. 
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Recall also that the screw principal generators within the cylindroid of this system‘s freedom 

space must have pitch values that are not equal to each other but are of the same sign.  They must 

also have non-zero and finite values.  With these facts in mind, one may deduce that the two 

orthogonal ribbons shown above that exist within the constraint space of this system are either 

both right-handed or both left-handed orthogonal ribbons.  Furthermore, one may deduce that the 

pitch of the ribbons, or the rate that the lines translate as they rotate along their axes, must also 

be different. 

 

If the pitch values of both principal generators were equal, the cylindroid of the freedom space 

would collapse into a disk of screws and that these two orthogonal ribbons would translate as 

they rotate with the same rate as do the infinite orthogonal ribbons within the constraint space of 

Case 4, Type 8.  In fact, if the pitches of these two principal generators were equivalent, this case 

and type would become Case 4, Type 8.  It can, therefore, be intelligently hypothesized that the 

complete constraint space for this case and type is a series of nested elliptical hyperboloids that 

contain an infinite number of orthogonal ribbons that translate as they rotate at different rates 
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Figure 8.84: Another orthogonal ribbon within the constraint space of Case 4, Type 9 that also 

complements a cylindroid of pure screws with principal generators aligned along the x- and y-axes. 
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toward a central constraint line similar to the constraint space of Case 4, Type 8.  The 

hyperboloids would, in fact, have to be elliptical if these ribbons had different pitches.  The two 

ribbons drawn in Figure 8.83 and Figure 8.84 are shown again within these nested elliptical 

hyperboloids in Figure 8.85 and Figure 8.86 to help the reader visualize the actual geometry of 

the constraint lines.  Note also that the axes of these ribbons and, therefore, the principal 

generators within the system‘s freedom space are coincident with the major and minor axes of 

the smallest elliptical cross-sections within the nested elliptical hyperboloids. 

 

 

Figure 8.85: The same orthogonal ribbon from Figure 8.83 shown within nested elliptical hyperboloids.  

The axis of this ribbon (thick black) is the minor axis of the smallest elliptical cross-sections of the 

hyperboloids (dashed black) and was the y-axis from Figure 8.83. 
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Appendix N mathematically proves that the hypothesis is correct.  The complete constraint 

space of Case 4, Type 9 is indeed an infinite number of nested elliptical hyperboloids as shown 

in Figure 8.87. 

 

Figure 8.86: The same orthogonal ribbon from Figure 8.84 shown within nested elliptical hyperboloids.  

The axis of this ribbon (thick black) is the major axis of the smallest elliptical cross-sections of the 

hyperboloids (dashed black) and was the x-axis from Figure 8.84. 
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The minor axis of the smallest elliptical cross-section of each nested hyperboloid will arbitrarily 

be chosen to mathematically describe this constraint space.  Recall also that this axis is the y-axis 

using the previous coordinate system.  The distance along this axis from the center point of the 

elliptical hyperboloids is b.  When b equals zero, the corresponding elliptical hyperboloid is a 

single vertical constraint line.  As b increase, the constraint lines within the corresponding 

elliptical hyperboloids begin to approach a flat plane, which is perpendicular to the central 

vertical constraint line.  This concept is shown in Figure 8.88.  This plane of constraint lines is 

not a part of the constraint space since b never actually reaches infinity. 

 

Figure 8.87: Constraint space of Case 4, Type 9 
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If Equation (N.1) and Equation (N.4) are substituted from Appendix N into Equation (7.7) 

from Chapter 7, one finds that the equation for a single elliptical hyperboloid within the 

constraint space of Case 4, Type 9 is 

 

 

 

where 1p  and 2p  are the pitch values of the principal generators from the cylindroid of the 

system‘s freedom space.  The equation for the system‘s complete constraint space of nested 

elliptical hyperboloids is, therefore, Equation (8.24) for all real values of b where each value 

corresponds to a single elliptical hyperboloid with a minor axis of b. 

 

Note that if 1p  is set equal to 2p  and a and b are set equal to L, the system would become Case 

4, Type 8.  This expectation is confirmed since Equation (8.24) does become Equation (8.23) 

when these values are equated. 

 

Figure 8.89 shows how the freedom and constraint spaces of this system fit together.  The 

principal generators from the cylindroid of pure screws are coincident with the major and minor 

axes of the smallest elliptical cross-sections within the nested elliptical hyperboloids of the 

constraint space. 

b=0 b=∞b=0 b=∞  

Figure 8.88: Nested elliptical hyperboloids within the constraint space of Case 4, Type 9 for different 

values of b where b is the minor axis of the hyperboloid‘s smallest elliptical cross-section. 
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Four sub-constraint spaces exist within this constraint space.  All four sub-constraint spaces look 

identical to the constraint space.  Each, however, has its own set of unique instructions for 

guiding the designer in selecting every possible set of non-redundant constraints from within the 

constraint space of the system.  The first is shown in Figure 8.90.   

 

Figure 8.89: Freedom space (green) and constraint space (blue) of Case 4, Type 9 together. 
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The second sub-constraint space is shown in Figure 8.91. 

3 constraints from 
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Figure 8.90: First sub-constraint space of Case 4, Type 9 
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The third sub-constraint space is shown in Figure 8.92. 
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Figure 8.91: Second sub-constraint space of Case 4, Type 9 
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The fourth sub-constraint space is shown in Figure 8.93. 
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Figure 8.92: Third sub-constraint space of Case 4, Type 9 
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8.4 Case 5: 

This section describes the fifth case of 6.  The fifth case consists of all systems that contain five 

non-redundant constraints.  Using Equation (2.1) from Chapter 2, therefore, one deduces that 

the freedom spaces within Case 5 contain only a single independent twist.  It was previously 

concluded that since there are only three fundamentally different twists (pure rotations, screws, 

and pure translations), there must only be three types within this case.  In this section, these three 

freedom spaces will be presented briefly and their unique constraint spaces will then be 

determined.  The concept of sub-constraint space and how it applies to Case 5 will be discussed 

at the end of this section as well. 

 

 

1 constraint from 

any four different 

hyperboloids that 

don’t lie on the 

same orthogonal 

ribbon

1 constraint

1 constraint

1 constraint

1 constraint

1 constraint from 

any four different 

hyperboloids that 

don’t lie on the 

same orthogonal 

ribbon

1 constraint

1 constraint

1 constraint

1 constraint

 

Figure 8.93: Fourth sub-constraint space of Case 4, Type 9 
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8.4.1 Case 5, Type 1: 

This section describes the unique constraint space of a system with a freedom space that consists 

of a single pure rotational freedom line.  This freedom space is shown in Figure 8.94. 

 

Since this freedom space consists entirely of pure rotational freedom lines, Blanding‘s Rule of 

Complementary Patterns may be applied to determine its constraint space.  Every line that 

intersects the freedom line at least once is an allowable constraint line within the constraint 

space.  This constraint space is shown in Figure 8.95.  It consists of an infinite number of 

spherical constraint sets.  Each of these spherical sets contains every constraint line that 

intersects a single point along the freedom line.  Every point along the freedom line is the central 

point of a single spherical constraint set.  The constraint space also contains a box constraint set 

that consists of every constraint line in three-space that is parallel to the freedom line. 

 

Figure 8.94: Freedom space of Case 5, Type 1 
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Figure 8.96 shows how the freedom and constraint spaces fit together.  The freedom line 

intersects the center point of every spherical constraint set and is parallel to every constraint line 

in the box constraint set. 

 

 

 

8.4.2 Case 5, Type 2: 

This section describes the unique constraint space of a system with a freedom space that consists 

of a single screw line.  This freedom space is shown in Figure 8.97.  The screw has a non-zero 

finite pitch value. 

Figure 8.95: Constraint space of Case 5, Type 1 

 

Figure 8.96: Freedom space (red) and constraint space (blue) of Case 5, Type 1 together 
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Since this freedom space consists of a single screw, Equation (3.13) may be used to determine 

the system‘s constraint space.  This constraint space is shown in Figure 8.98.  The constraint 

lines may be represented as blue lines that are tangent to the surface of a cylinder with a radius of 

d as shown in the figure.  The pitch value, p, of the freedom space‘s screw determines the angle, 

θ, of these constraint lines at designated points on the surface of every cylinder for all real values 

of d. 

 

Figure 8.99 shows how the freedom and constraint spaces fit together.  The screw line is 

coincident with the dashed black line in Figure 8.98. 

 

Figure 8.97: Freedom space of Case 5, Type 2 

θ = c*90   where c is any integer
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If d=0 then θ=90 

p =d*tan θ
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If d=0 then θ=90 
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If d=0 then θ=90 

p =d*tan θ

 

Figure 8.98: Constraint space of Case 5, Type 2 
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8.4.3 Case 5, Type 3: 

This section describes the unique constraint space of a system with a freedom space that consists 

of a single pure translation.  This freedom space is shown in Figure 8.100 as a pure rotational 

hoop with a normal vector that points in the direction of the translational motion. 

 

Since this freedom space consists of a pure rotational freedom line at infinity, Blanding‘s Rule of 

Complementary Patterns may be applied to find the system‘s constraint space by finding every 

line that intersects it at least once.  This constraint space is shown in Figure 8.101.  It consists of 

an infinite number of stacked planar constraint sets that are all parallel to each other.  Each of 

these planes contains every constraint line that lies on its surface. 

θ = c*90   where c is any integer

d

If d=0 then θ=90 

p =d*tan θ

θ = c*90   where c is any integer

d

If d=0 then θ=90 

p =d*tan θ

If d=0 then θ=90 

p =d*tan θ

 

Figure 8.99: Freedom space (green) and constraint space (blue) of Case 5, Type 2 together 

 

Figure 8.100: Freedom space of Case 5, Type 3 
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Figure 8.102 shows how the freedom and constraint spaces fit together.  The normal vector of 

the pure rotational hoop is parallel to the normal vectors of the planar constraint sets. 

 

8.4.4 Sub-constraint Space of Case 5  

This section describes how the concept of sub-constraint space applies to the constraint spaces of 

Case 5.  In short, the sub-constraint spaces of Case 5 are the constraint and sub-constraint spaces 

of Case 4. 

 

To better understand why this is true, the reader must recognize that every freedom space within 

Case 4 that contains the type of twist within the freedom space of interest from Case 5 will have 

 

Figure 8.101: Constraint space of Case 5, Type 3 

 

Figure 8.102: Freedom space (red) and constraint space (blue) of Case 5, Type 3 together 
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a constraint space that is contained within the constraint space of that particular type from Case 

5.  This must be true because the constraint space of the freedom space of interest from Case 5 

contains every constraint line that complements its particular twist while every constraint space 

of every freedom space that contains the same twist from Case 4 also complements that twist.  If 

this were not true, the twist would not exist within that freedom space from Case 4.  The only 

difference between the Case 5 constraint space and the constraint spaces of Case 4 that contain 

the same twist within their freedom spaces, is that the Case 4 constraint spaces complement more 

twists than the single twist that the constraint space from Case 5 complements.  The freedom 

spaces of Case 4 types contain two independent twists while the constraint spaces of Case 5 

types contain only a single independent twist.  The designer can, therefore, use the sub-constraint 

spaces of any constraint space within Case 4 with a unique freedom space that contains the twist 

of interest from the Case 5 freedom space to determine the first four non-redundant constraints of 

the system.  Then the designer can select any constraint line that does not lie within the complete 

constraint space of the type he/she chose from Case 4 that does lie within the constraint space of 

the Case 5 freedom space in order to determine the fifth and final non-redundant constraint of the 

system. 

 

The author is aware that this concept appears extremely complicated and confusing to a first time 

reader.  In actuality, however, it is really quite simple when the explanation is accompanied with 

an example.  An extensive example of this concept will, therefore, be given in the last case study 

in Chapter 10.  The reader is, therefore, encouraged to withhold frustration until carefully 

studying this example before prematurely yielding to confusion. 

 

8.5 Case 6: 

This section describes the sixth case of 6.  The sixth case consists of all systems that contain 6 

non-redundant constraints.  Using Equation (2.1) from Chapter 2, therefore, one deduces that 

the freedom spaces within Case 6 contain no twists.  Furthermore, there is only a single type 

within this case since a system that is fully constrained and fixed cannot move and, therefore, has 

only one freedom space containing nothing. 
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8.5.1 Case 6, Type 1: 

This section describes the unique constraint space of a system with an empty freedom space.  

Since this system‘s freedom space is empty, its complementary constraint space consists of every 

constraint line in three-space.  Once a system has 6 non-redundant constraints, any other 

constraint selected from anywhere will result in the same empty freedom space and will, 

therefore, be redundant. 

 

The freedom and constraint spaces of Case 6, Type 1 are shown in Figure 8.103. 

 

In order to select 6 non-redundant constraints from within this constraint space the designer must 

again rely on sub-constraint spaces.  The sub-constraint spaces of Case 6 are the constraint 

spaces of Case 5, and the constraint and sub-constraint spaces of Case 4.  The concept is similar 

to Case 5‘s sub-constraint spaces described in the previous section.  The designer first uses the 

sub-constraint spaces from a particular constraint space within Case 4 to select the first four non-

redundant constraints of the system.  Then he/she selects the fifth non-redundant constraint from 

the desired Case 5 constraint space that does not lie within the selected Case 4 constraint space.  

Then the sixth non-redundant constraint is selected from within the Case 6 constraint space 

(anywhere) that does not lie within the selected Case 5 constraint space.  Again, this concept will 

make more sense after the example from Chapter 10. 

 

Nothing

Constraint space Freedom space

Nothing

Constraint space Freedom space

 

Figure 8.103: Freedom space (white) and constraint space (blue) of Case 6, Type 1 
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CHAPTER 9: 

“Systems Symmetry” 

This chapter summarizes and compares the cases and types found in the previous two chapters 

and discusses significant observations relating to patterns of symmetry within their freedom and 

constraint spaces.  Essentially the purpose of this chapter is to tie up loose ends and provide the 

reader with a ―big picture‖ of the complete theory necessary for a full understanding of the 

FACT method.  A new, special case (Case 0) will also be presented in the context of a broader 

theory that mathematically describes all possible kinematic systems in three-space, not just 

systems constrained by ideal compliant flexures. 

 

9.1 Symmetry Within Cases 1 Through 6 

This section reviews the 6 cases and their respective types described in Chapter 7 and Chapter 

8.  In this chapter, the author will only briefly review figures of these spaces assuming the reader 

has already carefully studied their geometries in previous chapters.  Seen together, a surprising 

symmetry is observed in the types found in Cases 1 through 3 and Cases 4 through 6. 
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Figure 9.1, Figure 9.2, Figure 9.3, Figure 9.4, Figure 9.5, and Figure 9.6 all review the types 

within Cases 1 through 6. 

 

Type 1:

CASE 1:

Type 1:

CASE 1:

 

Figure 9.1: Case 1 types (constraint space on the left and freedom space on the right of the arrow) 
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Figure 9.2: Case 2 types (constraint space on the left and freedom space on the right of the arrow) 
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Figure 9.3: Case 3 types (constraint space on the left and freedom space on the right of the arrow) 
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Figure 9.4: Case 4 types (constraint space on the left and freedom space on the right of the arrow) 
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Figure 9.5: Case 5 types (constraint space on the left and freedom space on the right of the arrow) 
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Type 1:

CASE 6:

Type 1:

CASE 6:

 

Figure 9.6: Case 6 types (constraint space on the left and freedom space on the right of the arrow) 

Observe the increasing number of types in the first three cases.  Case 1 has one type, Case 2 has 

three types, and Case 3 has 9 types.  In contrast, note the decreasing number of types within the 

last three cases.  Case 4 has 9 types, Case 5 has three types, and Case 6 has one type.  The 

symmetry within the cases is clearly shown in Figure 9.7. 
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Figure 9.7: Every case and type for all systems of ideal constraints
4
 

 

                                                 
4
 Merlet [41] and McCarthy [32]  classify lines similarly in their works  
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The symmetry noted above is pleasing but surprising to the author.  The author would have 

expected symmetry within systems that don‘t only include ideal constraints capable of only 

imparting axial forces like the flexure systems studied thus far.  The reason for the expected 

symmetry within these types of systems will be shown in the next section. 

 

 

 

 

9.2 Proof of Symmetry 

This section reviews some basic concepts of screw theory discussed in Chapter 3 and uses these 

concepts to prove that systems containing all types of constraints are symmetric about Case 3. 

 

Systems that contain all types of constraints instead of just systems that contain ideal constraints 

only will now be considered.  In other words, this section will discuss systems consisting of 

constraints modeled as wrenches that are allowed to have any real values of q instead of systems 

consisting of constraints modeled as wrenches that must have q values of zero where q is defined 

in Section 3.2 from Chapter 3.  Thus far wrenches with q values of zero have been represented 

as blue lines in three-space.  Now wrenches with infinite q values will be represented as purple 

lines.  Also wrenches with q values that are finite and non-zero will be represented as brown 

lines.  This convention is shown in Table 9.1. 

 

Table 9.1: Wrench names and line colors for different categories of q 

q Value Name of Wrench Color of Wrench Line 

0q  Constraint Line  

q  Pure Torque  
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 0q  Coupled Force and Torque  

 

Thus far wrenches with q values equal to zero have been called constraint lines.  They are only 

capable of imparting axial forces on the objects they constraint and are analogous with pure 

rotational freedom twists with pitch values equal to zero.  Wrenches with infinite q values are 

called pure torques.  They are only capable of imparting torques about their wrench lines and are 

analogous to pure translational twists with infinite pitch values.  Pure torques could just as well 

be represented by blue constraint line hoops with infinite radii that are orthogonal to their wrench 

lines since pure translations are represented by pure rotational hoops as discussed in Chapter 4.  

Wrenches with finite non-zero q values represent constraints that impart both axial forces with 

coupled torques about their wrench lines.  They are analogues to screws with finite non-zero 

pitch values.  Compare Table 9.1 with Table 3.1 from Chapter 3. 

 

Recall now that a general wrench vector, W


, for all types of constraints for all values of q may 

be expressed as  

 

 

where its parameters are defined in Section 3.2 of Chapter 3.  Every possible constraint space 

from Case n may be expressed as a wrench matrix,  W , that contains n rows of independent 

wrench vectors from within the particular constraint space as shown by 

 

 

 

 

 

Recall also that a general twist vector, T


, for all types of degrees of freedom for all pitch values, 

p, may be expressed as  
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where its parameters are defined in Section 3.1 of Chapter 3.  Every possible freedom space 

from Case n may, therefore, be expressed as a twist matrix,  T , that contains 6-n rows of 

independent twist vectors from within the particular freedom space as shown by 

 

 

 

 

 

Suppose now a new operator,  , is defined that switches the first three columns of an m6 

matrix with the last three columns such that 

 

 

 

 

for an arbitrary 36 matrix.  Using Equation (3.12) from Chapter 3, therefore, any constraint 

space‘s relationship with its unique freedom space can be represented as 

 

 

or as 

 

 

 

where  0  is an appropriately sized matrix filled with all zero values. 

 

Suppose now an arbitrary constraint space is defined for a system, (a), with a wrench matrix 

 aW .  Using Equation (9.6) its complementary unique freedom space could be represented by a 

twist matrix  aT .  Now suppose one wished to define another system, (b), with a freedom space 

that looks geometrically identical to the last system‘s constraint space.  In other words, 
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 bT =  aW  or the rows of  bT  are made to be independent linear combinations of the rows of 

 aW .  The only visual difference between the constraint space of system (a) and the freedom 

space of system (b) is that every line that is blue in system (a) is shown as red in system (b), 

every line that is purple in system (a) is shown as black in system (b), and every line that is 

brown in system (a) is shown as green in system (b).  According to Equation (9.6) and 

Equation (9.7), system (b)‘s constraint space matrix,  bW , would either be equal to system (a)‘s 

freedom space matrix,  aT ,  or its rows would be independent linear combinations of the rows 

within  aT .  In other words, system (b)‘s constraint space would look geometrically identical to 

system (a)‘s freedom space where the red lines would be drawn as blue lines, the black lines 

would be drawn as purple lines, and the green lines would be drawn as brown lines. 

 

Every Case N constraint space, therefore, looks geometrically identical to some Case 6-N 

freedom space and every Case N freedom space looks geometrically identical to some Case 

6-N constraint space.  This means that systems containing all types of constraints are 

symmetric about Case 3. 

 

Traces of this conclusion are seen within the freedom and constraint spaces of the systems that 

contain only ideal constraints (q=0) shown in Figure 9.1 through Figure 9.6.  Note the 

geometric similarities in Case 1, Type 1‘s freedom space and Case 5, Type 1‘s constraint space 

as well as Case 1, Type 1‘s constraint space and Case 1, Type 1‘s freedom space.  Also note the 

geometric similarities in Case 2, Type 1‘s freedom space and Case 4, Type 1‘s constraint space 

as well as Case 2, Type 1‘s constraint space and Case 4, Type 1‘s freedom space.  Also note the 

geometric similarities in Case 2, Type 2‘s freedom space and Case 4, Type 2‘s constraint space 

as well as Case 2, Type 2‘s constraint space and Case 4, Type 2‘s freedom space.  Also note the 

geometric similarities in Case 2, Type 3‘s freedom space and Case 4, Type 3‘s constraint space 

as well as Case 2, Type 3‘s constraint space and Case 4, Type 3‘s freedom space.  The only 

geometric difference between these spaces is that the freedom spaces show every type of twist 

for all pitch values while the constraint spaces only show wrenches with zero q values.   
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Note also that every freedom space within Case 3 looks almost identical in shape to its 

complementary constraint space.  This observation is true because Case 3 is symmetric about 

itself.  For this reason, all the doubly ruled surfaces show up as constraint and freedom space 

pairs within Case 3.  If wrenches for all q values where determined for every system within Case 

3, one would find that every freedom space within Case 3 is exactly identical in shape to its 

complementary constraint space.  

 

The reader may wonder what case is symmetric to Case 6 if all cases are symmetric about Case 

3.  The answer is given in the next section. 

 

9.3 Case 0: 

This section describes a special extra case called Case 0.  This case consists of all systems with 

zero or no non-redundant constraints.  In other words, it consists of systems of free standing 

bodies that are not constrained by anything.  Since there is only one way to not constrain an 

object, it is evident that this case has only a single type.  From the conclusion in Section 9.2, this 

type‘s freedom space would be expected to be similar to the constraint space of Case 6, Type 1 

and this type‘s constraint space would be expected to be similar to the freedom space of Case 6, 

Type 1 since Case 6 is symmetric with Case 0 about Case 3.   

 

9.3.1 Case 0, Type 1: 

This section describes the unique freedom space of a system with an empty constraint space.  

Since this system‘s constraint space contains no constraints, its complementary freedom space 

consists of every twist in three-space.  In other words, its freedom space includes every pure 

rotational freedom line (red), every screw with every finite non-zero pitch value (green), and 

every pure rotational hoop that may be represented by a sphere of pure translations that point in 

all directions (black).  This should be obvious since a free standing object may, by definition, 

move with any motion possible being completely unrestricted. 
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The constraint space of Case 0, Type 1 is shown in Figure 9.8 and the freedom space of Case 0, 

Type 1 is shown in Figure 9.9. 

NothingNothing

 

Figure 9.8: Constraint space (white) of Case 0, Type 1 

 

 

Figure 9.9: Freedom space (red, green, and black) of Case 0, Type 1 

 

9.4 More Types Within Each Case 

Now that systems that include all types of wrenches are being considered, one must also suppose 

that many of the constraint spaces found in past chapters would include more lines that were not 

accounted for because they initially contained only ideal constraints with zero q values (The new 

lines would be brown and purple according to the convention).  Furthermore, one should also 

suspect the existence of other new types within many of the cases.  This section discusses these 

types that are not accounted for. 

 



 294 

To understand why more types exist that are not accounted for within systems that consist of all 

types of wrenches, consider the freedom space of Case 4, Type 7 shown in Figure 9.4.  It 

consists of a cylindroid of screws (green) with a single pure rotational freedom line (red).  From 

symmetry one would expect an identical constraint space to exist within Case 2 that consists of a 

single ideal constraint line (blue) on the surface of a cylindroid of wrenches with finite, non-zero 

q values (brown).  This constraint space is, however, no where to be found in Figure 9.2.  The 

reason for this is that, although this constraint space does consist of two independent wrenches 

and, therefore, does belong to Case 2, the constraint space does not contain two non-redundant 

ideal constraint lines but only one. 

 

Since all the freedom spaces of Cases 4, 5, and 6 were found in Chapter 8, and since they all 

include every type of twist possible (pure rotations, pure translations, and screws), the number of 

types that must exist within those cases can be known even without a full understanding of what 

their complementary unique constraint spaces look like.  Recall from Section 8.1 of Chapter 8 

that Case 4 would actually have 10 types for systems that include all types of wrenches where 

the tenth type‘s freedom space is a disk of pure translations.  Recall also that Case 5 has three 

types and Case 6 has only one type. 

 

From symmetry, therefore, the complete constraint spaces that include all types of wrenches for 

Cases 0, 1, and 2 are known.  They will be identical to the freedom spaces of Cases 6, 5, and 4 

respectively.  Case 0 must have one type, Case 1 must have three types (one for each type of 

wrench), and Case 2 must have 10 types.  The author does, however, not know how many types 

Case 3 would have for systems that include all types of wrenches.  It is certain that there would 

be more than the 9 types found in Chapter 7 for systems of ideal constraints, but more research 

is necessary to determine exactly how many more and what these new types would look like.  

There are a finite number of these new types and their freedom spaces would look identical to 

their complementary constraint spaces since Case 3 is symmetric about itself. 

 

To give the reader an idea of what some of these new spaces would look like, the author has 

found two of the new types within Case 3 for systems that include all types of wrenches.  They 

are shown in Figure 9.10.  One type consists of a spherical constraint space of wrenches with 
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finite, non-zero q values with a complementary spherical freedom space of screws with finite, 

non-zero pitch values.  All the wrenches have the same q values in the constraint space and all 

the screws have the same pitch values in the freedom space and both of these values are also 

equivalent with each other.  The second new type consists of a spherical constraint space of pure 

torques with infinite q values and a complementary spherical freedom space of pure translations 

with infinite pitch values.  Case 3, therefore, has at least 11 types. 

Constraint Space

Constraint Space Freedom Space

Freedom Space

q  =  p

Type 10:

Type 11:

Constraint Space

Constraint Space Freedom Space

Freedom Space

q  =  p

Type 10:

Type 11:

 

Figure 9.10: Two new types within Case 3 for systems that include all types of wrenches 

 

The results of this chapter‘s discussion are shown in Table 9.2.  This table demonstrates the 

proven symmetry about Case 3 among the number of types within each case for systems that 

include all types of wrenches.  It also compares these systems‘ symmetry with the unexpected 

symmetry observed within systems of ideal constraints studied in the rest of this thesis. 
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Table 9.2: The number of types within each case for systems consisting of all types of wrenches (q=any 

real number) and systems consisting of only ideal constraints (q=0).  The number of types shown in red 

demonstrates the symmetry observed in this thesis for flexure systems with ideal constraints. 

q Values Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

q=any real 

number 

1 3 10 ? 10 3 1 

q=0 

 

1 1 3 9 9 3 1 

 

It should now be emphasized that although more types do exist outside the 26 types discussed 

and described in the rest of this thesis, those 26 types shown in red in Table 9.2 are the only 

types with any useful spaces for designing flexure systems.  In fact, those spaces alone fully 

describe all the possible kinematics and constraint topologies for most real world systems 

because most real world systems consist of constraints that are best modeled as ideal.  For this 

reason, the author has not pursued the study of systems that include other types of constraints 

further. 
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CHAPTER 10: 

“FACT Design Method” 

This chapter describes how flexure systems may be designed using Freedom and Constraint 

Topology (FACT).  Essentially it demonstrates the utility of the theory developed thus far.  The 6 

step FACT design method is first presented and discussed followed by three comprehensive 

design case studies. 

 

10.1 Six Steps of FACT 

This section introduces the 6 steps of the FACT design method.  Each step will be discussed in 

detail in subsequent subsections.  The 6 steps are shown in Figure 10.1. 

 

Figure 10.1: 6 steps of the FACT design method for designing flexure systems 

 

10.1.1 Step 1:  Design Stage Geometry 

The first step of the FACT design method is to design flexure system‘s stage.  This step has no 

restrictions since the allowable motions or degrees of freedom of a system are completely 

independent of the shape, orientation, or size of its stage as was discussed in Chapter 2.  The 
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constraint space  
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stage geometry 
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designer, therefore, has the freedom to design any imaginable shape on any scale as long as it is 

possible to manufacture.  The size of the stage designed determines the system‘s characteristic 

length.  This length imposes restrictions on the minimum length of the system‘s constraints and 

largely determines how far apart the constraints should be located for greatest stability.  There 

will be more discussion of this concept in later sections. 

 

10.1.2 Step 2: Specify Desired Motions 

The second step of the FACT design method is to specify the flexure system‘s desired motions, 

i.e. freedom topology, or degrees of freedom.  In other words, the designer determines what 

twists the stage should be able to move with.  There are no restrictions on this step either.  Any 

pure rotation, any pure translation, and any screw with any pitch value may be specified in any 

location and in any orientation in three-space. 

 

10.1.3 Step 3: Select Best Freedom and Constraint Space 

The third step of the FACT design method is to select the most appropriate freedom and 

constraint space pair or type from within the most appropriate case based on the twists specified 

in Step 2.  At least one of the 26 possible freedom spaces will always contain the twists specified 

in Step 2.  Those that do contain all of the specified twists will often contain many more twists 

that are not desired by the designer.  The best or most appropriate freedom space for any given 

group of specified twists is defined as the space that contains all the specified twists with as few 

extra, unwanted twists as possible.  In many cases, the designer will have to make due with a 

flexure system that may move with undesired motions, but the fewer undesired motions the 

flexure system has, the easier it will be to control such that it only moves with the desired 

motions specified from Step 2. 

 

Selecting the best freedom and constraint space pair from the 26 available types is in many 

instances a difficult task for a novice designer when presented with an arbitrary group of twists 

from Step 2.  Fortunately, a program may be written which reliably performs this step 



 299 

independent of the designer.  In short, therefore, once the designer has simply determined what 

he/she wants from Steps 1 and 2, a computer tool may be utilized to provide him/her with the 

best constraint space that contains every possible answer for achieving the desired motions with 

as few undesired motions as possible. 

 

10.1.4 Step 4: Select Sub-constraint Space 

The fourth step of the FACT design method is to select a desired sub-constraint space from 

within the constraint space determined in Step 3.  If the constraint space determined in Step 3 

belongs to Case 1, 2, or 3, the sub-constraint space is simply the constraint space and no choice 

needs to be made.  If, however, the constraint space belongs to Case 4, there will be a number of 

sub-constraint spaces to choose from.  If the constraint space from Step 3 belongs to Case 5, a 

constraint space from Case 4 that belongs within that constraint space must be chosen as well as 

a sub-constraint space within that Case 4 constraint space.  If the constraint space from Step 3 

belongs to Case 6, a constraint space from Case 5 must be selected as well as a constraint space 

from Case 4 that lies within that Case 5 constraint space.  Finally a sub-constraint space from 

that Case 4 constraint space must also be selected. 

 

The selection of sub-constraint spaces is a design decision that narrows down the possible 

solutions or constraint topologies of the flexure system being designed.  The decision should be 

made based on geometric constraint considerations, symmetry, or balanced stiffness 

requirements of the final flexure system.  The location and geometry of the ground with respect 

to the stage, for instance, would largely determine which sub-constraint space to select.  Some 

sub-constraint spaces, for example, may not contain constraint lines that pass through the ground 

and stage.  Selecting different sub-constraint spaces will have different consequences on the 

flexure system‘s final appearance and performance.  Each sub-constraint space should, therefore, 

be thoughtfully considered before a final decision is made. 
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10.1.5 Step 5: Select Non-redundant Constraints 

The fifth step of the FACT design method is to select appropriate non-redundant constraints from 

the sub-constraint space chosen in Step 4.  The number of non-redundant constraints that need to 

be selected is the system‘s case number.  Instructions are included with every sub-constraint 

space that guide the designer in appropriately selecting the non-redundant constraints.  If the 

system is from Case 5, the fifth non-redundant constraint will be a constraint that exists within its 

constraint space but that does not exist within the constraint space of the Case 4 constraint space 

from which the sub-constraint space was selected.  This will also be true for a system from Case 

6.  In this case, however, the sixth non-redundant constraint will be a constraint that does not lie 

within the Case 5 constraint space chosen but that does lie within the constraint space of Case 6.  

An example of this concept is provided in the last case study of this chapter. 

 

Non-redundant constraints chosen from constraint sets should be as far apart from each other as 

possible.  At very least they should be a characteristic length apart as determined by the size of 

the stage of the flexure system designed in Step 1.  The reason for this is that the farther apart 

constraints are situated, the greater stability the flexure system will have.  This statement is true 

because external disturbance torques will best be resisted as the resisting torque moment arms 

are increased. 

 

Furthermore, constraints chosen should be able to be long enough to act as ideal constraints in 

that they are very compliant in directions perpendicular to their axes, but short enough so as to 

not buckle under realistic axial loads.  They should at least be a characteristic length long and 

must span between ground and the stage of the flexure system.  These considerations should also 

influence the designer in selecting appropriate sub-constraint spaces in Step 4. 
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It is important to note, that once Step 5 is complete, the flexure system is non–redundantly 

constrained and therefore the stage will move with the desired degrees of freedom.  In some 

instances, the designer could stop here having achieved his/her objective. 

 

10.1.6 Step 6: Select Redundant Constraints 

The sixth step of the FACT design method enables the designer to select redundant constraints 

from the system‘s constraint space.  This step is sometimes desirable if symmetry, increased 

stiffness or load capacity is necessary.  By adding redundant constraints, the flexure system‘s 

kinematics will not change, but sometimes the designer can achieve more robust designs by 

adding the extra constraints.  Adding redundant constraints such that the mechanism will be 

symmetric, for instance, will make the system impervious to thermal expansion errors. Also, 

systems redundantly constrained can afford some constraint failure without loosing kinematic 

performance.  Furthermore, suppose the designer wishes to add stiffness to the system without 

making the existing constraints shorter or thicker.  This is achieved by adding redundant 

constraints. 

 

10.2 Three Case Studies 

This section provides three practical examples of flexure systems designed using the FACT 

design method.  The first of these case studies is the design of a compliant spherical ball joint, 

the second is the design of a compliant probe for a five axis STM, and the third is the design of a 

three-dimensional compliant rotary flexure.   

 

10.2.1 Compliant Spherical Ball Joint 

This section demonstrates the design of a compliant spherical ball joint using the FACT design 

method.  Before proceeding, however, it must be emphasized that the main purpose of this 

section is not to introduce a new mechanism, but rather to demonstrate how quickly an effective 

flexure system design may be conceived using the FACT design steps for a Case 3 system. 
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Ball joints are useful machine elements on any scale.  They consist of a linkage with a ball on 

one end fitted inside a cup-like casing on the end of a second linkage.  This type of joint prevents 

translations while allowing three independent, orthogonal rotations.  Ball joints are common in 

nature as hip joints.  A traditional ball joint is shown in Figure 10.2.   

 

Figure 10.2: Spherical ball joint 

 

Traditional spherical ball joints consist of two parts that experience wear as they rub against each 

other and generate heat through friction.  If a compliant version of a spherical ball joint could be 

developed, the problems of heat generation, friction and wear would largely be eliminated and a 

sufficient range of motion could be achieved for small, micro- or nano-devices.  In most cases, 

these motions would be repeatable with atomic precision so long as the device is not actuated 

beyond its elastic region. 

 

The 6 steps of the FACT design method will now be applied to develop a compliant version of 

the spherical ball joint.  Step 1 requires the designer to first design the spherical ball joint‘s stage.  

Since this stage may be any shape, the same stage from the traditional spherical ball joint will be 

used.  This is shown in Figure 10.3. 
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Figure 10.3: Stage of the compliant spherical ball joint designed from Step 1 

 

Step 2 requires the designer to now specify the degrees of freedom he/she wishes this stage to 

move with.  In order to imitate the kinematics of the traditional spherical ball joint, three 

orthogonal, independent pure rotations are chosen that all intersect at the center of the sphere as 

shown in Figure 10.4. 

 

Figure 10.4: Desired degrees of freedom specified from Step 2 

 

Step 3 requires the designer to select the most appropriate freedom and constraint space pair for 

this system.  Since it consists of three independent twists as specified from Step 2, one 

recognizes that this system belongs to a freedom space from Case 3.  One should also recognize 

that the most appropriate type within Case 3 for this system is Type 4.  The most appropriate 

freedom and constraint space pair for this system is shown in Figure 10.5.  Note that this system 
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will not only move with three orthogonal intersecting pure rotations as specified in Step 2, but 

will move with any pure rotational freedom line that intersects the center point of the sphere. 

Freedom Space Constraint SpaceFreedom Space Constraint Space  

Figure 10.5: Case 3, Type 4 selected for Step 3 given the desired degrees of freedom from Step 2 

 

Step 4 requires the designer to now choose a sub-constraint space for the system.  Since this 

system belongs to Case 3, however, there is only one sub-constraint space to choose from.  This 

sub-constraint space is shown in Figure 10.6.  It includes instructions to the designer for 

selecting constraints that are non-redundant. 

3 constraints that don’t 

lie on the same plane

3 constraints that don’t 

lie on the same plane

 

Figure 10.6: Sub-constraint space selected from Step 4 
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Step 5 requires the designer to select three non-redundant constraints from the sub-constraint 

space chosen from Step 4.  Recall that the most stable system possible will be the system whose 

constraint lines are as far from each other as possible.  This is achieved by selecting a tripod of 

constraint lines from the sphere that are all orthogonal to each other.  One possible solution is, 

therefore, shown in Figure 10.7. 

 

Figure 10.7: Selecting non-redundant constraints from Step 5 that are as far apart as possible (dark blue 

lines are the constraint lines selected) 

 

At this point, a compliant spherical ball joint has successfully been designed that moves with the 

exact same degrees of freedom as a traditional two piece spherical ball joint.  One could now 

proceed to Step 6 by selecting more redundant constraints from the constraint space of the 

system, but because increased symmetry, load capacity, and stiffness are not absolutely 

necessary for the purposes of this mechanism, the design process will stop here.  The final design 

is shown in Figure 10.8 next to a traditional spherical ball joint. 

 

This flexure system could also find applications in precision optics.  Its topology could be used 

to constrain a lens such that it may only move about a fixed focal point. 
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Traditional CompliantTraditional Compliant

 

Figure 10.8: Traditional and compliant versions of a spherical ball joint 

 

10.2.2 Compliant Probe For a Five Axis STM 

This section demonstrates the design of a compliant probe used to achieve five axes of scanning 

for a Scanning Tunneling Microscope (STM).  The purpose of this section is to demonstrate 

FACT for a Case 4 system. 

 

Traditional STMs create images of surfaces using a three degree of freedom scanning system 

[42].  A probe is held fixed in the head of the microscope suspended above the sample being 

imaged.  The sample rests on top of a piezo actuator that provides the three degrees of freedom—

x, y, and z translations.  Electrons are tunneled through the STM‘s probe and into the sample 

being imaged across a gap with a distance that is exponentially related to the tunneling current.  

A control system is used to maintain this gap distance by maintaining a constant tunneling 

current as the sample raster scans back and forth under the probe while the probe is tracking the 

sample‘s surface.  The image of the surface is constructed from the feedback control voltage on 

the vertical z-piezo element as it corrects for changing surface-to-tip distance. 

 



 307 

Three primary sources of error occur when imaging with a traditional three axis STM.  The first 

error is caused by geometric incompatibilities between the probe and the surface being scanned.  

Often times the probe is not small enough or is not properly oriented to fit in or around cracks 

and dips in the surface.  The second error is caused by the fact that the tunneling current doesn‘t 

always tunnel through the axis of the probe.  If the probe is against a wall inside a dip on the 

sample, the electrons may discharge laterally.  The third error is caused by the probe‘s tip 

bending due to electrostatic forces while scanning. 

 

If two extra degrees of freedom were added to the scanning process (pitch and yaw of the probe) 

such that the STM becomes a five axis STM instead of a traditional three axis STM, all three 

imaging errors would be reduced and the microscope‘s resolution and accuracy would be 

improved [43].  This is the case because adding pitch and yaw to the probe would more easily 

allow the probe to be as orthogonal to the sample‘s surface as possible. The probe could reach 

places it couldn‘t normally reach with the extra degrees of freedom.  The resulting decrease in 

imaging error is demonstrated in Figure 10.9. 

Traditional 3-

axis STM probez

x y
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Error
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Figure 10.9: Image quality is improved when an STM capable of five axis scanning is implemented 

 

Since the piezo actuator on which the sample rests successfully achieves the three necessary 

translational degrees of freedom in traditional STMs, the two extra degrees of freedom will be 

added to the STM‘s probe for the design of the new five axis STM.  In what follows, therefore, a 

compliant probe capable of pitch and yaw will be designed using FACT. 
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Step 1 requires the designer to first design the probe‘s stage geometry.  The probe holder stage 

shown in Figure 10.10 is the stage design that will be used for this example. 

 

Figure 10.10: Stage geometry of the compliant STM probe designed from Step 1 

 

Step 2 requires the designer to now specify the desired degrees of freedom the stage is to move 

with.  As indicated earlier, pitch and yaw are the system‘s desired degrees of freedom.  These 

degrees of freedom are independent orthogonal intersecting pure rotations that yield a disk of 

pure rotations as shown in Figure 10.11.  This disk of pure rotations allows the tip of the probe 

to sweep out the inside of a spherical dimple in the surface of a sample being scanned. 
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Yaw

Pitch

Yaw

Pitch

 

Figure 10.11: Desired degrees of freedom specified from Step 2 include the pitch and yaw of the STM 

probe such that its tip may sweep out a spherical dimple in the sample‘s surface 

 

Step 3 requires the designer to select the most appropriate freedom and constraint space pair for 

this system.  Since it consists of two independent pure rotational twists, this system must belong 

to Case 4.  The most appropriate type within this case is Case 4, Type 1 since its freedom space 

consists of a disk of pure rotations.  This freedom and constraint space pair is shown in Figure 

10.12. 

0 < θ < 180

Freedom Space Constraint Space

0 < θ < 1800 < θ < 1800 < θ < 180

Freedom Space Constraint Space  

Figure 10.12: Case 4, Type 1 selected for Step 3 given the desired degrees of freedom from Step 2 
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Step 4 requires the designer to now choose a sub-constraint space for the system.  Recall from 

Section 8.3.1 in Chapter 8 that Case 4, Type 1 has four sub-constraint spaces.  They are shown 

in Figure 10.13 without their instructions for choosing the non-redundant constraints due to the 

fact that there is not room for instructions in the figure.  These instructions are, however, given in 

Figure 8.22, Figure 8.23, Figure 8.24, and Figure 8.25 from Chapter 8. 

1) 2)

3) 4)

1) 2)

3) 4)

 

Figure 10.13: Four sub-constraint spaces of Case 4, Type 1.  The third one will be chosen for Step 4. 

 

Although any of the four sub-constraint spaces within Case 4, Type 1 could produce functioning 

constraint topologies, the third sub-constraint space shown in Figure 10.13 will produce a 

sufficiently symmetric and robust design with constraints that fit within the geometry of the STM 

head.  This third sub-constraint space will, therefore be selected for Step 4. 

 

Step 5 requires the designer to select four non-redundant constraints from this chosen sub-

constraint space.  Two of these non-redundant constraints are to be chosen from the planar set of 
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constraint lines.  In order to optimize stability, these two constraints must attach to the probe‘s 

stage but be as far apart from each other as possible.   Two other non-redundant constraints are 

also to be selected from the disk constraint set.  These two constraints will be most stable if they 

are orthogonal since this orientation also places them as far apart from each other as possible.  A 

feasible solution is, therefore, shown in Figure 10.14. 

2 constraints from the disk

2 parallel 

constraints from 

the plane

2 constraints from the disk

2 parallel 

constraints from 

the plane

 

Figure 10.14: Selecting non-redundant constraints from Step 5 that are as far apart as possible (dark blue 

lines are the constraint lines selected) 

 

At this point, a compliant STM probe has been designed that is capable of pitch and yaw degrees 

of freedom.  This probe is shown in Figure 10.15 with its kinematics shown in red as pure 

rotational freedom lines. 
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Figure 10.15: Non-redundantly constrained compliant STM probe with its kinematics shown in red 

 

Although the probe designed thus far moves with the desired degrees of freedom from Step 1, it 

is not yet a symmetric mechanism.  If the probe were to experience a fluctuation in temperature, 

the constraints attached to it would expand and contract moving the probe with undesired and 

uncontrolled motions.  Step 6 will, therefore, be followed by selecting redundant constraints 

from the system‘s constraint space to correct for these thermal expansion errors.  Four more 

constraints are chosen from the system‘s constraint space to add symmetry to the probe as shown 

in Figure 10.16. 
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Figure 10.16: Redundant constraints are selected from the system‘s constraint space to create a thermally 

symmetric probe for Step 6 

 

A solid model of the final STM probe capable of pitch and yaw is shown in Figure 10.17.  An 

exploded view of the STM‘s parts is also shown in the figure.  The outer rectangle is held fixed 

inside the STM‘s head while the probe is free to move.  Two actuators would need to be attached 

to the probe‘s stage to independently actuate its pitch and yaw motions. 
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Figure 10.17: Solid model of a compliant probe for a five axis STM 

 

10.2.3 Three-dimensional Compliant Rotary Flexure 

This section demonstrates the design of a three-dimensional compliant rotary flexure using the 

FACT design method.  The purpose of this section is to demonstrate FACT for a Case 5 system. 

 

Rotational motion is important to many applications.  Some possible applications at the micro- or 

nano-scale include hinges, levers, drills, or vibration energy harvesters.  Compliant rotary 

flexures are not a new invention.  Planar compliant rotary flexures are commonly used for 

achieving precise rotational motions about an instant center with an axis that is perpendicular to 

the plane of the flexure.  Three-dimensional compliant rotary flexures are more complex and 

difficult to design.  Such flexures may be preferable to planar rotary flexures under certain 

circumstances due to geometric incompatibilities or space requirements.  In this section a three-

dimensional rotary flexure will be designed that could not easily be conceived without using the 

FACT design method. 

 

Step 1 requires the designer to first design the mechanism‘s stage.  The stage of the rotary 

flexure designed for this example is shown in Figure 10.18. 
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Figure 10.18: Stage of the compliant rotary flexure designed from Step 1 

 

Step 2 requires the designer to now specify the degrees of freedom he/she wishes this stage to 

move with.  As indicated earlier, the objective of the rotary flexure is to rotate about its axis.  

This degree of freedom may be represented by a single pure rotational freedom line as shown in 

Figure 10.19. 

 

Figure 10.19: Desired rotational degree of freedom specified from Step 2. 

 

Step 3 requires the designer to select the most appropriate freedom and constraint space pair for 

this system.  Since it consists of a single pure rotational twist, this system must belong to Case 5.  

The most appropriate type within this case is Case 5, Type 1.  This freedom and constraint space 

pair is shown in Figure 10.20. 
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Freedom Space Constraint SpaceFreedom Space Constraint Space
 

Figure 10.20: Case 5, Type 1 selected for Step 3 given the desired degrees of freedom from Step 2 

 

Step 4 requires the designer to now choose a sub-constraint space for the system.  To achieve this 

task one must first select a constraint space from Case 4 with a unique freedom space that 

contains a pure rotational freedom line.  Suppose one chooses Case 4, Type 7 for this purpose.  

These spaces are shown in Figure 10.21.  Note also that the pure rotational freedom line (red) 

within the freedom space of Case 4, Type 7 is coincident with the pure rotational freedom line 

within the freedom space of Case 5, Type 1. 

∞

∞

Freedom Space Constraint Space
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∞

∞

∞

Freedom Space Constraint Space  

Figure 10.21: Case 4, Type 7 selected within Step 4 for finding a sub-constraint space for the system. 
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Now that the constraint space of Case 4, Type 7 has been selected, recall from Section 8.3.7 in 

Chapter 8 that this constraint space has five sub-constraint spaces.  These sub-constraint spaces 

are shown in Figure 10.22 without their instructions for choosing the non-redundant constraints 

due to the fact that there is no room for instructions in the figure.  These instructions are, 

however, given in Figure 8.68, Figure 8.69, Figure 8.70, Figure 8.71, and Figure 8.72 from 

Chapter 8. 

1) 2) 3)

4) 5)

1) 2) 3)

4) 5)

 

Figure 10.22: Five sub-constraint spaces of Case 4, Type 7.  The first one will be chosen for Step 4. 

 

In order to complete Step 4, one of these sub-constraint spaces must be chosen.  The first sub-

constraint space is selected for this example. 

 

Step 5 requires the designer to select non-redundant constraints from the chosen sub-constraint 

spaces.  The first sub-constraint space within Case 4, Type 7 selected from Step 4 requires the 

designer to select four non-redundant constraints.  Two of these non-redundant constraints 

should be selected from within one of the disks within the system‘s constraint space.  One of the 

non-redundant constraints should be selected from another disk within the system‘s constraint 

space as long as it is not the axis of the disks (dashed blue).  The other non-redundant constraint 

should be selected from the plane of parallel constraint lines as long as it is also not the axis of 

the disks.  These instructions are followed to select the first four non-redundant constraints as 

shown in Figure 10.23. 
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Figure 10.23: Selecting four non-redundant constraints from the first sub-constraint space of Case 4, 

Type 7 for Step 5 (dark blue lines are the constraint lines selected) 

 

Step 5, however, has not yet been completed.  Only four of five non-redundant constraints have 

been selected and, therefore, the rotary flexure is expected to move with two independent twists 

instead of only one.  This fact is already known because the kinematics of the rotary flexure thus 

far is described by the freedom space of Case 4, Type 7 as shown in Figure 10.24. 

 

Figure 10.24: The kinematics of the current design with four non-redundant constraints is described by 

the freedom space of Case 4, Type 7. 
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In order to properly select the fifth and final non-redundant constraint, one must first recognize 

that since the freedom space of Case 5, Type 1 lies within the freedom space of Case 4, Type 7, 

the constraint space of Case 4, Type 7 must lie within the constraint space of Case 5, Type 1 as 

shown in Figure 10.25.  Note that each disk within the constraint space of Case 4, Type 7 lies 

within a single corresponding sphere within the constraint space of Case 5, Type 1.  Note also 

that the plane of parallel lines within the constraint space of Case 4, Type 7 lies within the box of 

parallel lines within the constraint space of Case 5, Type 1. 

 

Figure 10.25: The constraint space of Case 4, Type 7 lies within the constraint space of Case 5, Type 1 

 

If the fifth constraint were to be selected from within the constraint space of Case 4, Type 7, it 

would, by definition, be redundant.  Furthermore, if the fifth constraint is selected such that it lies 

anywhere outside the constraint space of Case 4, Type 7, it will be non-redundant.  But in order 

for this non-redundant constraint to complement the freedom space of Case 5, Type 1, it must lie 

within the constraint space of Case 5, Type 1 as well.  The conclusion is, therefore, drawn that 

the fifth non-redundant constraint must lie within the constraint space of Case 5, Type 1 but must 

not lie within the constraint space of Case 4, Type 7.  The fifth non-redundant constraint selected 

for this example satisfies these conditions and is shown in Figure 10.26.  Once this constraint is 

selected, Step 5 is complete and all five non-redundant constraints have been selected. 
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Figure 10.26: Selecting the fifth non-redundant constraint from the constraint space of Case 5, Type 1 

that doesn‘t lie within the constraint space of Case 4, Type 7 to complete Step 5 (dark blue line is the 

constraint line selected) 

 

At this point, a compliant rotary flexure has successfully been designed with a single rotational 

degree of freedom.  It is shown in Figure 10.27 with its kinematics shown in red. 

 

Figure 10.27: Non-redundantly constrained compliant rotary flexure 
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One could now proceed to Step 6 by selecting redundant constraints from the constraint space of 

Case 5, Type 1 to add symmetry, stiffness, load capacity, etc, but for this example, the process 

will stop here.  The reason for this is that the objective for this example has already been 

achieved.  The design proposed above is not very practical and would probably never be used as 

an actual rotary flexure but it was designed this way to help the reader understand how Steps 4 

and 5 of the FACT design method work for Case 5 flexure systems, and to show the reader how 

spaces may efficiently be selected to produce non-intuitive and functioning designs that could 

not easily be conceived without using FACT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 322 

CHAPTER 11: 

“Conclusion” 

This chapter reviews the purpose, importance, and impact of this research.  This chapter also 

summarizes the accomplishments of this research and discusses future work for advancing the 

FACT design method. 

 

11.1 Purpose, Importance and Impact 

The purpose of this thesis is to learn how to represent every possible freedom and constraint 

topology in three dimensions to form a framework called FACT that allows designers, novice or 

expert, to create any parallel, multi-axis flexure system. 

 

The importance of this research is that flexure system designers can be confident that the final 

design selected will most optimally achieve the desired design requirements.  FACT embodies 

every possible design solution for parallel flexure systems and thus the designer is able to 

visualize and consider every possible solution from the beginning of the design process before 

selecting an optimal design for a specific application. 

 

The impact of FACT is that it improves the design processes for small-scale flexure systems and 

precision machines that require complex three-dimensional motion.  The demand for low-cost, 

precision machines that are capable of multi-axis motion increases with the advance of micro- 

and nanotechnologies.  These technologies find applications in modern consumer products such 

as memory storage devices, flat panel TVs, and fiber optic devices.  The ability to achieve 

complex mechanical motions on the nano-scale is also important for helping physicists and 

scientists understand natural laws on that scale. 
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11.2 Accomplishments 

This section reviews some of the major accomplishments of this thesis: 

(1) An effective method for visually representing constraints and degrees of freedom in three-

space has been developed.  The relationship between a system‘s degrees of freedom and its 

complementary constraints has also qualitatively and quantitatively been described using 

Douglass Blanding‘s Rule of Complementary Patterns, screw theory, and projective geometry.  

Screw theory was implemented in order to understand and describe coupled degrees-of-freedom 

and projective geometry proved useful in visually representing pure translations.  Before the 

creation of FACT, flexure system designers were not able to easily design flexures that were 

capable of moving with coupled motions. 

 

(2) From this research it was found that the complete freedom and constraint topologies of any 

system may be visually displayed as ruled surfaces and volumes that contain an infinite number 

of freedom and constraint lines.  These spaces are called freedom and constraint spaces.  Every 

system will have a unique pair of freedom and constraint spaces.  Common surfaces in 

mathematics such as the hyperbolic paraboloid, the hyperboloid, and the cylindroid were found 

to be fundamental building blocks of many freedom and constraint spaces.  Furthermore, these 

spaces have been mathematically described and parameterized.  These spaces allow designers to 

rapidly identify non-intuitive flexure system design concepts. 

 

(3) A qualitative and quantitative understanding of the difference between redundant and non-

redundant constraints has also been developed and applied to the creation of spaces within a 

system‘s constraint space that directs designers in selecting appropriate non-redundant 

constraints.  These spaces are called sub-constraint spaces.  Using these spaces designers can 

satisfy stiffness and symmetry design requirements without altering the mechanism‘s motions.  

Before the creation of FACT, constraint redundancy was not well understood and thus could not 

be implemented to improve flexure system design. 

 

(4) From this research it was found that a finite number of ways exist to visually represent all 

possible solutions for every parallel flexure system in three-space.  More specifically, for flexure 
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systems there are 26 constraint and freedom space pairs within 6 cases where the number of each 

case corresponds to the number of non-redundant constraints within the system.  A system is 

fixed when it contains 6 non-redundant constraints.  The 26 pairs or types were displayed in 

Chapter 9 and are shown again here in Figure 11.1.  Note the symmetry within the cases.  Cases 

1 and 6 have one pair of spaces, Cases 2 and 5 have three pairs of spaces, Cases 3 and 4 have 

nine pairs of spaces.  Before the creation of FACT, designers did not understand that every 

possible parallel flexure system exists within a finite number of spaces.  Designers incorrectly 

assumed that an infinite number of ways exist for constraining a stage.  Through this research all 

the ways a stage can be constrained have been discovered and organized into 26 spaces. 
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Figure 11.1: Every case and type for all flexure systems 
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(5)  The FACT design method for the synthesis of parallel flexure systems has been created.  

This method consists of 6 steps.  FACT is capable of designing every possible parallel flexure 

system capable of any possible motions in three-space.  The steps include: 

 

Step 1:  Design stage geometry 

Step 2:  Specify desired motions 

Step 3:  Select best freedom and constraint space 

Step 4:  Select sub-constraint space 

Step 5:  Select non-redundant constraints 

Step 6:  Select redundant constraints 

 

11.3 Future Work 

This section describes future research efforts to further FACT. 

(1) The work done thus far contains the kinematic solutions for all possible flexure systems.  The 

elasto-mechanics of systems has, however, not been addressed in this thesis.  More work needs 

to be done in guiding the designer in selecting appropriate constraints from sub-constraint spaces 

and in determining their optimal lengths and thicknesses to achieve desired system stiffnesses.  

The dynamics of these flexure systems including modal and vibration analysis must also be 

investigated and integrated into the FACT design tool as well as steps to avoid constraints from 

buckling. 

 

(2)  Constraints with alternate geometries such as coils could potentially be modeled as wrenches 

with non-zero q values.  If this were true, the designer would have access to more freedom and 

constraint space pairs.  More research would, therefore, need to be done to determine how many 

types would exist within Case 3 and to add the extra types that would also exist within Cases 1 

and 2 for systems containing wrenches of all real q values.  The existing constraint spaces found 

in this thesis would also need to include these new constraints. 
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(3) Once the flexure system‘s stage has been constrained such that it may only move with the 

desired degrees of freedom, actuators must be attached to it to actuate these degrees of freedom.  

Certain actuator locations and orientations are better than others for controlling these motions.  

Research should be done to guide the designer in optimally placing and attaching these actuators. 

 

(4) So far FACT is only capable of designing flexure systems that consist of a single rigid stage 

constrained by long slender beams grounded at one end.  Research could be done, however, to 

extend these principles to the design of such mechanisms stacked in series or in parallel.  This 

concept is shown in Figure 11.2. 

Series:

Rigid Body

Rigid Body Rigid Body

Rigid Body

Rigid Body

Parallel:Series:

Rigid Body

Rigid Body Rigid Body

Rigid Body

Rigid Body

Parallel:

 

Figure 11.2: Parallel flexure systems stacked in series and in parallel 

 

(5)  The FACT design method must be integrated into a virtual reality design tool that allows the 

designer to view and select constraints within a three dimensional ―user friendly‖ environment. 

 

The completion of these tasks will make FACT an even more powerful design tool for the 

synthesis of precision flexure systems. 
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APPENDIX A:  

“Proof of Twist and Wrench Relationship” 

 

This appendix explains how Equation (3.12) is simplified to Equation (3.13) from Chapter 3. 

 

Equation (3.12) may be simplified to 

 

 

 

Recalling that q always equals zero for constraints used in flexure systems and referring to the 

parameters and their relationships shown in Figure A.1, Equation (A.1) simplifies to 

 

 

 

If the shortest distance line, d, is considered positive moving from the wrench to the twist, the 

skew angle, θ, will be positive as defined in Figure A.1 according to the right-hand rule.  From 

Figure A.1 note that 

 

 

 

If Equation (A.3) is plugged into Equation (A.2) and the magnitude of the cross product of the 

w


 and f


vectors are solved for, Equation (A.2) is simplified to 

 

 

 

which may further be simplified to Equation (3.13).  

 

      0)(  wfqpfwrc


. (A.1) 

    0cos   cos   wfpfwrc


. (A.2) 

  drc  cos


. (A.3) 

0cos w sin    fpfwd


, (A.4) 
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Figure A.1: The parameters and relationships needed to simplify Equation (A.1) 
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APPENDIX B:  

“A Second Pitch Equation” 

 

Equation (3.13) relates the pitch of a twist to the shortest distance between that twist and the 

wrench as well as the skew angle between these lines.  This appendix finds another equation for 

the pitch of a twist in terms of that twist‘s orientation and location vectors as well as the 

wrench‘s orientation and location vectors.  This second pitch equation is used in Chapter 7 to 

prove Equation (7.1). 

 

Using Figure B.1, the shortest distance, d, between an arbitrary twist line and an arbitrary 

wrench line may be expressed as  

 

 

 

 

Using the definition of a dot product and applying the parameters shown in Figure B.1 note also 

that 
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The tangent of the skew angle, θ, can now be found by applying Equation (B.2) to construct the 

triangle shown in Figure B.2.  From this triangle, it is clear that 
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Figure B.1: Arbitrary twist and wrench lines with the parameters necessary for finding d and cosθ in 

terms of their orientation and location vectors. 
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Equation (3.13) can now be applied to find the second pitch equation by multiplying Equation 

(B.1) to Equation (B.3).  The pitch, p, of this arbitrary twist in terms of the orientation and 

location vectors, r


, f


, c


, and w


 is, therefore, 
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Figure B.2: Triangle constructed from Equation (B.2) 
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APPENDIX C:  

“A Point and Two Skew Lines” 

 

This appendix contains the mathematical proof for locating the single line that intersects a point 

and two skew lines in three-space.  The concepts discussed in this appendix are used in Chapter 

7 for determining complementary lines within ribbon sets. 

 

For any pair of skew lines, every point in three-space will be intersected by a single line that also 

intersects these two lines.  This is true unless the point is on one of the skew lines in which case 

an infinite disk of lines will both intersect that point and the two skew lines.  If the point is not on 

one of the skew lines but lies on one of their parallel planes, the line that intersects it and the two 

skew lines (either in finite space or at infinity) will lie on that plane and will be parallel to the 

other skew line on the opposing parallel plane.  If the point lies somewhere above, between, or 

below the two parallel planes of the two skew lines, there will be a single line that intersects both 

it and the two skew lines.  This line points in a direction that will now be solved for. 

 

To solve for this orientation vector, w


, the point of interest, c


, and the two skew lines must first 

be mathematically defined.  Suppose one wished to define the first skew line using a location 

vector, 1r


, and an orientation vector, 1f


, and one wished to define the second skew line with a 

location vector, 2r


, and an orientation vector, 2f


.  These vectors are shown in Figure B.1.  The 

line that intersects both the point of interest, c


, and the two skew lines lies on a plane with a 

normal vector, n


, of 

 

 

 

The equation of this plane also shown in Figure B.1 is 

 22 rcfn


 . (C.1) 
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where h can be solved for using a point on this plane.  Since it is known that c


 is a point on this 

plane by definition,  

 

 

The parameter b is defined to be a scalar value such that the vector given by 

 

 

 

 

will be a point that lies on that plane as well.  If Equation (C.3) and Equation (C.4) are plugged 

into Equation (C.2), b can be solved for as  
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The unit vector, w


, that points in the direction of the line that passes through point c


 and 

intersects the two skew lines can now be solved for as 

 

 

 

 

Since the location and orientation vectors, c


 and w


, of the line that intersects both the point of 

interest and the two general skew lines have been found, the desired line of interest has been 

found. 
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Figure C.1: Two skew lines (blue) with their location and orientation vectors, r


 and f


, and the 

orientation vector, w


, (red) of the line that intersects both of these skew lines and a point c

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A function has been written using MATLAB that finds this line‘s orientation vector given any 

point and any two skew lines.  It is provided below: 

 

function [w] = PointSkewLine(r1,f1,r2,f2,pt) 

%Input: Two skew lines each with a location vector, r, and 

%and an orientation vector, f, and a point, pt. 

%Output: Orientation vector, w, of the  

%line that intersects both lines and the point. 

%A possible location vector of this line is c. 

c = pt; 

planeNdir = cross(f1,f2); %vector pointing normal to the plane 

planeN = planeNdir/sqrt(dot(planeNdir,planeNdir)); %unit vector of this direction 

h1 = dot(planeN,r1); 

h2 = dot(planeN,r2); 

if(dot(cross(f1,(c-r1)),cross(f1,(c-r1))) == 0 || dot(cross(f2,(c-r2)),cross(f2,(c-r2))) == 0) 

    disp('Error: Point lies on one of the skew lines') 

elseif(dot(planeN,c) == h1)        %if the point is on plane 1: 

    wdir = f2; 

elseif(dot(planeN,c) == h2)        %if the point is on plane 2: 

    wdir = f1; 

else                                %point is not one either plane 

    ndir = cross(f2,(c-r2));            

    n = ndir/sqrt(dot(ndir,ndir)); 

    h = dot(n,c); 

    b = (h-dot(n,r1))/dot(n,f1); 

    rint = r1+(b*f1); 

    wdir = c-rint; 

end 

w = wdir/sqrt(dot(wdir,wdir));  %make the w direction a unit vector 
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APPENDIX D:  

“Drawing Ribbon Space” 

 

This appendix contains the MATLAB code necessary for generating the ribbon spaces shown in 

Figure 7.68.  This code is also capable of generating any other freedom and constraint spaces 

that contain only three independent skew pure rotations and three independent skew ideal 

constraints. 

 

The code consists of three functions.  One of these functions is given in Appendix C and the 

other two functions are given below.  These functions require the user to input three skew 

constraint lines in the form of three different location vectors, r


, and three different orientation 

vectors, f


.  The user must also specify how many lines should be drawn within each space and 

how long each line segment should be.  The program then finds freedom lines by treating one of 

the skew constraint lines as a series of points and by applying the principles discussed in 

Appendix C.  Three of these freedom lines are then used to find the rest of the constraint lines 

using the same principles.  The lines are plotted point by point. 

 

The two new functions are given as: 

 

Function (1): 

function PlotLine(r1,f1,len,color) 

%Function plots a line 

%Input: r1 = location vector of the line 

%       f1 = orientation vector of the line 

%       len = length of the line 

%       if color = 1 the line is blue 

%       if color = 2 the line is red 

f1 = f1/sqrt(dot(f1,f1)); 

plot3(r1(1),r1(2),r1(3)) 

for t = -(len/2):0.05:(len/2); 

    hold on; 

    line = r1 + f1*t; 
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    if(color == 1) 

        plot3(line(1),line(2),line(3),'b'); 

    elseif(color == 2) 

        plot3(line(1),line(2),line(3),'r'); 

    end 

end 

 

Function (2): 

function SkewFreeConst(r1,f1,r2,f2,r3,f3,range,inc,len) 

%Function takes three skew constraints and plots their freedom space (red) 

%and constraint space (blue) 

%range = determines how far out the lines in the spaces go 

%inc = determines how large the increment is between each line 

%len = determines how long each line is 

%Make the constraint orientation vectors f unit vectors 

f1 = f1/sqrt(dot(f1,f1)); 

f2 = f2/sqrt(dot(f2,f2)); 

f3 = f3/sqrt(dot(f3,f3)); 

%Find three pure rotational freedom lines 

c1 = r2+f2*-0.1; 

w1 = PointSkewLine(r1,f1,r3,f3,c1); 

c2 = r2+f2*0; 

w2 = PointSkewLine(r1,f1,r3,f3,c2); 

c3 = r2+f2*0.1; 

w3 = PointSkewLine(r1,f1,r3,f3,c3); 

%Make the freedom line orientation vectors w unit vectors 

w1 = w1/sqrt(dot(w1,w1)); 

w2 = w2/sqrt(dot(w2,w2)); 

w3 = w3/sqrt(dot(w3,w3)); 

%Plot the Freedom Space 

for t = -range:inc:range 

    c = r2 + f2*t; 

    w = PointSkewLine(r1,f1,r3,f3,c); 

    PlotLine(c,w,len,2); 

end 

%Plot the Constraint Space 

for t = -range:inc:range 

    r = c2 + w2*t; 

    f = PointSkewLine(c1,w1,c3,w3,r); 

    PlotLine(r,f,len,1); 

end 
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APPENDIX E:  

“Complementary Ribbon Spaces” 

 

This appendix explores the relationship between orthogonal freedom ribbon sets and their 

complementary orthogonal constraint ribbon sets discussed in Chapter 7.  More specifically, a 

study is conducted using MATLAB code that determines the pitches of complementary ribbon 

spaces and how they vary along their respective axes.  A constant is determined that fully 

describes any orthogonal ribbon. 

 

Seven functions were used to conduct this study but only six will be provided at the conclusion 

of this section.  The seventh function is given and discussed in Appendix C. 

 

The first two functions that will be discussed are the ―RightHandRibbon‖ and ―LeftHandRibbon‖ 

functions.  Both functions require the input of two skew lines that are skew with respect to each 

other and with respect to a reference line along the z-axis.  These lines are orthogonal to and 

intersect the y-axis.  The function requires the user to input each line‘s distance, d, away from the 

origin along the y-axis and each line‘s skew angle, g, with respect to the reference line.  This 

convention is shown in Figure E.1.  The ―RightHandRibbon‖ function requires the user to select 

positive skew angles and appropriate distances along the y-axis that will produce right handed 

ribbons.  The ―LeftHandRibbon‖ function requires the user to select negative skew angles and 

appropriate distances along the y-axis that will produce left handed ribbons.  This convention 

will always produce orthogonal ribbons with axes that are coincident with the shortest distance 

line of the three original skew lines.  This shortest distance line will always be the y-axis. 
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Once these three skew lines have been received by either function, the principles of Appendix C 

are used to find two new skew lines that are complementary to the three skew lines by treating 

one of them as a series of points in the midst of two skew lines.  Then the same principles are 

again applied to individual points along the y-axis using these two new skew lines.  The rest of 

the lines that lie within the right- or left-handed ribbon are located using this approach.  The 

skew angle with respect to the reference line of each of these lines is plotted versus their 

respective position along the y-axis.  The pitch of the resulting ribbon is then plotted along the 

ribbon‘s axis by calculating the inverse derivative of this plot.  The derivative of this pitch with 

respect to position along the y-axis is then calculated and plotted versus position along the 

ribbon‘s axis.  Finally the derivative of this function is calculated with respect to position along 

the y-axis.  This derivative is determined to be a constant value. 

 

Note that the double derivative of every orthogonal ribbon‘s pitch will always be a constant that 

is unique to that particular ribbon.  This constant will always be a positive value for right-handed 

ribbons and it will always be a negative value for left-handed ribbons.  This constant will be 

equivalent in magnitude but opposite in sign for complementary ribbons. 
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Figure E.1:  (1) ―RightHandRibbon‖ function‘s convention for right-handed ribbon input parameters.                   

(2) ―LeftHandRibbon‖ function‘s convention for left-handed ribbon input parameters. 
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This may be shown by using the next two functions.  Their names are ComplementaryRight2Left 

and ComplementaryLeft2Right.  These functions have the same input parameters as the 

functions discussed previously.  The ComplementaryRight2Left function receives three skew 

lines for a right-handed ribbon, calls the ―RightHandRibbon‖ function using these lines and then 

uses the principles of Appendix C to find three new skew lines that are complementary to these 

original three lines.  These new skew lines are then redefined to correspond with the convention 

shown in Figure E.1 such that their shortest distance line is coincident with the y-axis.  Finally 

the ―LeftHandRibbon‖ function is called using these three new skew lines to create the 

complementary left-handed ribbon.  The ComplementaryLeft2Right function performs this same 

procedure by receiving three skew lines that form a left-handed ribbon and then creates its 

complementary right-handed ribbon. 

 

The final two functions are used to calculate derivatives.  Their names are ―pitch‖ and 

―der_pitch‖.  The code for these functions is provided at the end of this appendix. 

 

The following is an example.  Suppose one enters three skew lines that create a right-handed 

ribbon with a center line that is the reference line along the z-axis by typing 

―ComplementRight2Left(5,(pi/4),10,((pi/2)-atan(.5)),30)‖ in the command window of MATLAB 

(These three lines where chosen so that the plots would be centered at zero).  Figure E.2 

contains the skew angles versus position along the ribbon‘s axis for lines within the right-handed 

ribbon (top) and its complementary left-handed ribbon (bottom).  Note their symmetry. 



 341 

-30 -20 -10 0 10 20 30
-1.5

-1

-0.5

0

0.5

1

1.5

Distance away from reference line along the ribbon’s axis

S
k
e
w

 a
n
g
le

 w
it
h
 r

e
s
p
e
c
t 
to

 r
e
fe

re
n
c
e
 l
in

e
 [

ra
d
]

Right-handed ribbon space for 3 given skew lines

-30 -20 -10 0 10 20 30
-1.5

-1

-0.5

0

0.5

1

1.5

Distance away from reference line along the ribbon’s axis

S
k
e
w

 a
n
g
le

 w
it
h
 r

e
s
p
e
c
t 
to

 r
e
fe

re
n
c
e
 l
in

e
 [

ra
d
]

Left-handed ribbon space for 3 given skew lines

-30 -20 -10 0 10 20 30
-1.5

-1

-0.5

0

0.5

1

1.5

Distance away from reference line along the ribbon’s axis

S
k
e
w

 a
n
g
le

 w
it
h
 r

e
s
p
e
c
t 
to

 r
e
fe

re
n
c
e
 l
in

e
 [

ra
d
]

Right-handed ribbon space for 3 given skew lines

-30 -20 -10 0 10 20 30
-1.5

-1

-0.5

0

0.5

1

1.5

Distance away from reference line along the ribbon’s axis

S
k
e
w

 a
n
g
le

 w
it
h
 r

e
s
p
e
c
t 
to

 r
e
fe

re
n
c
e
 l
in

e
 [

ra
d
]

Right-handed ribbon space for 3 given skew lines

-30 -20 -10 0 10 20 30
-1.5

-1

-0.5

0

0.5

1

1.5

Distance away from reference line along the ribbon’s axis

S
k
e
w

 a
n
g
le

 w
it
h
 r

e
s
p
e
c
t 
to

 r
e
fe

re
n
c
e
 l
in

e
 [

ra
d
]

Left-handed ribbon space for 3 given skew lines

-30 -20 -10 0 10 20 30
-1.5

-1

-0.5

0

0.5

1

1.5

Distance away from reference line along the ribbon’s axis

S
k
e
w

 a
n
g
le

 w
it
h
 r

e
s
p
e
c
t 
to

 r
e
fe

re
n
c
e
 l
in

e
 [

ra
d
]

Left-handed ribbon space for 3 given skew lines

 

Figure E.2: Complementary ribbon spaces with their lines‘ skew angles plotted against their position 

along the y-axis 
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Each ribbon‘s pitch values are plotted versus position along the ribbon‘s axis.  These plots are 

given in Figure E.3.  Note that the complementary ribbons‘ pitch values are equal and opposite 

at corresponding locations along the ribbons‘ axes. 
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Figure E.3: Complementary ribbon spaces with their pitch values plotted against position along the y-

axis 
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Figure E.4 provides the plots of the derivatives of these complementary ribbon pitch plots 

versus position along the ribbons‘ axes.  Note that both of these plots are linear. 
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Figure E.4: Derivative of the complementary ribbons‘ pitches plotted against position along the ribbons‘ 

axes. 
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Running the function of this example will also return these lines in the MATLAB command 

window: 

 

Right_sweep_angle = 2.8113 

Right_slope = 0.4000 

Left_sweep_angle = 2.8113 

Left_slope = -0.4000 

 

The ―Right_slope‖ and ―Left_slope‖ variables are the derivatives of the plots given in Figure 

E.4 with respect to position along the shortest distance lines or axes of each ribbon.  Note that 

these values are constant and have equal magnitudes (0.4) but opposite signs.  Note also that the 

pitch‘s double derivative constant is positive for the right-handed ribbon but it is negative for the 

complementary left-handed ribbon.  The code provided in this appendix allows one to find this 

characteristic constant for any orthogonal ribbon in three-space. 

 

The ―Right_sweep_angle‖ and ―Left_sweep_angle‖ variables are also provide by MATLAB.  

These variables are calculated from the difference of the last line‘s skew angle calculated at one 

end of the ribbon with the skew angle of the first line calculated at the other end of the ribbon 

determined by the range parameter specified by the user when the ―ComplementaryRight2Left‖ 

function was called (for this example the range was set to 30).  In other words, it is the absolute 

value of the last angle subtracted from the first angle from the plots given in Figure E.2.  Both of 

these variables approach 180 degrees or π (since the program uses radians) as the number of lines 

calculated within the ribbon is made larger.  Theoretically, if this range parameter was set to 

infinity, these variables would both equal π.  This finding confirms the hypothesis that all 

orthogonal ribbons will have a 180 degree twist that occurs at their center point. 

 

The MATLAB functions are provided: 
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Function (1): 

function RightHandRibbon(d1,g1,d2,g2,range) 

%Finds all lines in a right handed ribbon space by plotting the angle vs.  

%position of the lines inside the space along the y-axis 

%with respect to a reference line along the z-axis.  The other two 

%skew lines are assumed to intersect the y-axis and lie in planes 

%parallel to the x-z plane.  This function also finds the pitch of the 

%ribbon and plots it as well as the pitches derivative.  The constant double 

%derivative of the pitch is displayed as is the amount the skew angle has 

%changed over the range of lines tested. 

%Input: d1 = shortest distance between reference line and first input line 

%       g1 = skew angle between reference line and first input line [rad] 

%       d2 = shortest distance between reference line and second input line 

%       g2 = skew angle between reference line and second input line [rad] 

%       range = distance up and down from origin along y-axis 

%Constraints: 0<g1<pi  and 0<g2<pi but g1<g2 

r0 = [0 0 0];  %reference line location 

f0 = [0 0 1];  %reference line direction 

r1 = [0 d1 0];                %middle skew line location 

f1 = [sin(g1) 0 cos(g1)];   %middle skew line direction 

r2 = [0 d2 0];                %top skew line location 

f2 = [sin(g2) 0 cos(g2)];   %top skew line direction 

pt1 = r0 + f0;             %first  point on the reference skew line  

pt2 = r0 + 2*f0;           %second point on the reference skew line 

%find two lines that intersect all three skew lines 

c1 = pt1; 

w1 = PointSkewLine(r1,f1,r2,f2,pt1); 

c2 = pt2; 

w2 = PointSkewLine(r1,f1,r2,f2,pt2); 

t = [-range:0.1:range];    %location on the y-azis 

count = 1; 

%find the skew angles for the first half of the ribbon 

for i = -range:0.1:-0.1; 

    r = [0 i 0]; 

    f = PointSkewLine(c1,w1,c2,w2,r); 

    %check to make sure every line is orthogonal to ribbon's axis 

    if(abs(f(2)) >= 1.0e-06) %This should never happen since ribbon is orthogonal 

        disp('Error1'); 

    end 

    %a is the skew angle measure from reference line to the line of interest 

    if(abs(f(3))<=1.0e-06 && f(1)>0) 

        a(count) = -pi/2; 

    elseif(abs(f(3))<=1.0e-06 && f(1)<0) 

        a(count) = -pi/2; 

    elseif(f(3)>0 && abs(f(1))<=1.0e-06) 

        a(count) = 0; 
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    elseif(f(3)<0 && abs(f(1))<=1.0e-06) 

        a(count) = 0;    

    elseif(f(3)>0 && f(1)>0) 

        a(count) = atan(f(1)/f(3))-pi/2; 

    elseif(f(3)>0 && f(1)<0) 

        a(count) = atan(abs(f(3))/abs(f(1))); 

    elseif(f(3)<0 && f(1)>0) 

        a(count) = atan(abs(f(3))/abs(f(1)))-pi/2; 

    elseif(f(3)<0 && f(1)<0) 

        a(count) = atan(abs(f(1))/abs(f(3)))-pi/2; 

    else                             %This will happen if f is a zero vector 

        disp('Error2'); 

    end               

    count = count+1; 

end 

%find the skew angles for the second half of the ribbon 

for k = 0:0.1:range; 

    r = [0 k 0]; 

    f = PointSkewLine(c1,w1,c2,w2,r); 

    if(abs(f(2)) >= 1.0e-06) 

        disp('Error1'); 

    end 

    if(abs(f(3))<=1.0e-06 && f(1)>0) 

        a(count) = pi/2; 

    elseif(abs(f(3))<=1.0e-06 && f(1)<0) 

        a(count) = pi/2; 

    elseif(f(3)>0 && abs(f(1))<=1.0e-06) 

        a(count) = 0; 

    elseif(f(3)<0 && abs(f(1))<=1.0e-06) 

        a(count) = 0;    

    elseif(f(3)>0 && f(1)>0) 

        a(count) = atan(f(1)/f(3)); 

    elseif(f(3)>0 && f(1)<0) 

        a(count) = -atan(abs(f(1))/abs(f(3))); 

    elseif(f(3)<0 && f(1)>0) 

        a(count) = atan(abs(f(3))/abs(f(1)))-pi; 

    elseif(f(3)<0 && f(1)<0) 

        a(count) = atan(abs(f(1))/abs(f(3))); 

    else                      

        disp('Error2'); 

    end               

    count = count+1; 

end 

figure(1); 

plot(t,a); 

xlabel('Distance away from reference line along the ribbons axis'); 



 347 

ylabel('Skew angle with respect to reference line [rad]'); 

title('Right handed ribbon space for 3 given skew lines'); 

%Display the amount the skew angle has changed over the range of lines 

Right_sweep_angle = a(count-1)-a(1) 

figure(2) 

pit = pitch(t,a); 

title('Pitch for right handed ribbon space for 3 given skew lines'); 

figure(3); 

Right_slope = der_pitch(t,pit) 

title('Derivative of pitch for right handed ribbon space for 3 given skew lines'); 

 

Function (2): 

function LeftHandRibbon(d1,g1,d2,g2,range) 

%Finds all lines in a left handed ribbon space by plotting the angle vs.  

%position of the lines inside the space along the y-axis 

%with respect to a reference line along the z-axis.  The other two 

%skew lines are assumed to intersect the y-axis and lie in planes 

%parallel to the x-z plane.  This function also finds the pitch of the 

%ribbon and plots it as well as the pitches derivative.  The constant double 

%derivative of the pitch is displayed as is the amount the skew angle has 

%changed over the range of lines tested. 

%Input: d1 = shortest distance between reference line and first input line 

%       g1 = skew angle between reference line and first input line [rad] 

%       d2 = shortest distance between reference line and second input line 

%       g2 = skew angle between reference line and second input line [rad] 

%       range = distance up and down from origin along y-axis 

%Constraints: -pi<g1<0  and -pi<g2<0 but g2<g1 

r0 = [0 0 0];  %reference line location 

f0 = [0 0 1];  %reference line direction 

r1 = [0 d1 0];                %middle skew line location 

f1 = [sin(g1) 0 cos(g1)];   %middle skew line direction 

r2 = [0 d2 0];                %top skew line location 

f2 = [sin(g2) 0 cos(g2)];   %top skew line direction 

pt1 = r1 + f1;             %first  point on the middle skew line  

pt2 = r1 + 2*f1;           %second point on the middle skew line 

%find two lines that intersect all three skew lines 

c1 = pt1; 

w1 = PointSkewLine(r0,f0,r2,f2,pt1); 

c2 = pt2; 

w2 = PointSkewLine(r0,f0,r2,f2,pt2); 

t = [-range:0.1:range];    %location on the y-azis 

count = 1; 

for i = -range:0.1:-0.1; 

    r = [0 i 0]; 

    f = PointSkewLine(c1,w1,c2,w2,r); 
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    if(abs(f(2)) >= 1.0e-06)        %This should theoretically never happen 

        disp('Error1'); 

    end 

    if(abs(f(3))<=1.0e-08 && f(1)>0) 

        a(count) = pi/2; 

    elseif(abs(f(3))<=1.0e-08 && f(1)<0) 

        a(count) = pi/2; 

    elseif(f(3)>0 && abs(f(1))<=1.0e-08) 

        a(count) = 0; 

    elseif(f(3)<0 && abs(f(1))<=1.0e-08) 

        a(count) = 0;    

    elseif(f(3)>0 && f(1)>0) 

        a(count) = atan(f(1)/f(3)); 

    elseif(f(3)>0 && f(1)<0) 

        a(count) = atan(abs(f(3))/abs(f(1)))+pi/2; 

    elseif(f(3)<0 && f(1)>0) 

        a(count) = atan(abs(f(3))/abs(f(1)))+pi/2; 

    elseif(f(3)<0 && f(1)<0) 

        a(count) = atan(abs(f(1))/abs(f(3))); 

    else                             %This will happen if f is a zero vector 

        disp('Error2'); 

    end               

    count = count+1; 

end 

for k = 0:0.1:range; 

    r = [0 k 0]; 

    f = PointSkewLine(c1,w1,c2,w2,r); 

    if(abs(f(2)) >= 1.0e-06)        %This should theoretically never happen 

        disp('Error1'); 

    end 

    if(abs(f(3))<=1.0e-08 && f(1)>0) 

        a(count) = -pi/2; 

    elseif(abs(f(3))<=1.0e-08 && f(1)<0) 

        a(count) = -pi/2; 

    elseif(f(3)>0 && abs(f(1))<=1.0e-08) 

        a(count) = 0; 

    elseif(f(3)<0 && abs(f(1))<=1.0e-08) 

        a(count) = 0;    

    elseif(f(3)>0 && f(1)>0) 

        a(count) = atan(f(1)/f(3))-pi; 

    elseif(f(3)>0 && f(1)<0) 

        a(count) = atan(abs(f(3))/abs(f(1)))-pi/2; 

    elseif(f(3)<0 && f(1)>0) 

        a(count) = atan(abs(f(3))/abs(f(1)))-pi/2; 

    elseif(f(3)<0 && f(1)<0) 

        a(count) = atan(abs(f(1))/abs(f(3)))-pi; 
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    else                             %This will happen if f is a zero vector 

        disp('Error2'); 

    end               

    count = count+1; 

end 

figure(4); 

plot(t,a); 

xlabel('Distance away from reference line along the ribbons axis'); 

ylabel('Skew angle with respect to reference line [rad]'); 

title('Left handed ribbon space for 3 given skew lines'); 

%Display the amount the skew angle has changed over the range of lines 

Left_sweep_angle = a(1)-a(count-1) 

figure(5); 

pit = pitch(t,a); 

title('Pitch for left handed ribbon space for 3 given skew lines'); 

figure(6); 

Left_slope = der_pitch(t,pit) 

title('Derivative of pitch for left handed ribbon space for 3 given skew lines'); 

 

Function (3): 

function ComplementRight2Left(d1,g1,d2,g2,range); 

%Given a right handed ribbon space this function finds its complementary left 

%handed ribbon space 

%Input: d1 = shortest distance between reference line and first input line 

%       g1 = skew angle between reference line and first input line [rad] 

%       d2 = shortest distance between reference line and second input line 

%       g2 = skew angle between reference line and second input line [rad] 

%       range = distance up and down from origin along y-axis 

%Constraints: 0<g1<pi  and 0<g2<pi but g1<g2 

RightHandRibbon(d1,g1,d2,g2,range); 

r0 = [0 0 0];  %reference line location 

f0 = [0 0 1];  %reference line direction 

r1 = [0 d1 0];                %middle skew line location 

f1 = [sin(g1) 0 cos(g1)];   %middle skew line direction 

r2 = [0 d2 0];                %top skew line location 

f2 = [sin(g2) 0 cos(g2)];   %top skew line direction 

pt1 = r1 + 2*f1;             %first  point on the middle skew line  

pt2 = r1 + 1*f1;           %second point on the middle skew line 

pt3 = r1 + 0*f1;           %third point on the middle skew line 

%find three lines that intersect all three skew lines 

c1 = pt1; 

w1 = PointSkewLine(r0,f0,r2,f2,pt1); 

c2 = pt2; 

w2 = PointSkewLine(r0,f0,r2,f2,pt2); 

c3 = pt3; 
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w3 = PointSkewLine(r0,f0,r2,f2,pt3); 

%Make sure all w's are pointing in the correct direction for a 

%Left handed ribbon 

g23 = -abs(acos(dot(w2,w3)/(sqrt(dot(w2,w2))*sqrt(dot(w3,w3))))); 

g13 = -abs(acos(dot(w1,w3)/(sqrt(dot(w1,w1))*sqrt(dot(w3,w3))))); 

ndir13 = cross(w1,w3); 

n13 = ndir13/sqrt(dot(ndir13,ndir13)); 

d13 = abs(dot(n13,(c1-c3))); 

ndir23 = cross(w2,w3); 

n23 = ndir23/sqrt(dot(ndir23,ndir23)); 

d23 = abs(dot(n23,(c2-c3))); 

LeftHandRibbon(d23,g23,d13,g13,range); 

 

Function (4): 

function ComplementLeft2Right(d1,g1,d2,g2,range); 

%Given a left handed ribbon space this function finds its complementary right 

%handed ribbon space 

%Input: d1 = shortest distance between reference line and first input line 

%       g1 = skew angle between reference line and first input line [rad] 

%       d2 = shortest distance between reference line and second input line 

%       g2 = skew angle between reference line and second input line [rad] 

%       range = distance up and down from origin along y-axis 

%Constraints: -pi<g1<0  and -pi<g2<0 but g2<g1 

LeftHandRibbon(d1,g1,d2,g2,range); 

r0 = [0 0 0];  %reference line location 

f0 = [0 0 1];  %reference line direction 

r1 = [0 d1 0];                %middle skew line location 

f1 = [sin(g1) 0 cos(g1)];   %middle skew line direction 

r2 = [0 d2 0];                %top skew line location 

f2 = [sin(g2) 0 cos(g2)];   %top skew line direction 

pt1 = r1 + 2*f1;             %first  point on the middle skew line  

pt2 = r1 + 1*f1;           %second point on the middle skew line 

pt3 = r1 + 0*f1;           %third point on the middle skew line 

%find three lines that intersect all three skew lines 

c1 = pt1; 

w1 = PointSkewLine(r0,f0,r2,f2,pt1); 

c2 = pt2; 

w2 = PointSkewLine(r0,f0,r2,f2,pt2); 

c3 = pt3; 

w3 = PointSkewLine(r0,f0,r2,f2,pt3); 

%Make sure all w's are pointing in the correct direction for a 

%Right handed ribbon 

g23 = abs(acos(dot(w2,w3)/(sqrt(dot(w2,w2))*sqrt(dot(w3,w3))))); 

g13 = abs(acos(dot(w1,w3)/(sqrt(dot(w1,w1))*sqrt(dot(w3,w3))))); 

ndir13 = cross(w1,w3); 
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n13 = ndir13/sqrt(dot(ndir13,ndir13)); 

d13 = abs(dot(n13,(c1-c3))); 

ndir23 = cross(w2,w3); 

n23 = ndir23/sqrt(dot(ndir23,ndir23)); 

d23 = abs(dot(n23,(c2-c3))); 

RightHandRibbon(d23,g23,d13,g13,range); 

 

Function (5): 

function [p] = pitch(tt,a); 

%Plots the pitch of a ribbon space vs position along the y-axis 

%Input: a = skew angle relative to reference line 

%       tt = postion along the y-axis 

%Output: returns pitch, p 

t=tt(1:length(tt)-1); 

p=diff(tt)./diff(a); 

plot(t,p); 

xlabel('Distance away from reference line along line of shortest distance'); 

ylabel('Pitch of ribbon space [distance/rad]'); 

 

Function (6): 

function [slope] = der_pitch(tt,p); 

%Plots the pitch of a ribbon space vs position along the y-axis 

%Input: p = pitch 

%           tt = postion along the y-axis 

%Output: return slope of line (double derivative of pitch), slope 

for j = 1:(length(tt)-2) 

    t(j) = tt(j); 

end 

for k = 1:(length(tt)-2); 

    der_p(k) = (p(k+1)-p(k))/(tt(k+1)-tt(k)); 

end 

plot(t,der_p); 

xlabel('Distance away from reference line along line of shortest distance'); 

ylabel('Rate of pitch change along line of shortest distance [1/rad]'); 

len = length(t); 

slope = (der_p(len)-der_p(round(len/2)))/(t(len)-t(round(len/2))); 
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APPENDIX F:  

“Characteristic Screw’s Pitch Related to the 

Ribbon’s Pitch Double Derivative Constant” 

 

This appendix mathematically proves Equation (7.2) which defines the relationship between the 

pitch of a ribbon‘s characteristic screw, p, and the double derivative constant of the ribbon‘s 

pitch, K, discussed in Appendix E. 

 

Recall from Equation (3.13) in Chapter 3 that the pitch of a screw, p, is defined as 

 

 

where d is the shortest distance between the screw line and a constraint line and where θ is the 

skew angle between these lines.  Recall also that the constant K is the double derivative of a 

ribbon‘s pitch with respect to position along the ribbon‘s axis where the pitch of a ribbon, ribbonP , 

is defined as the change in the position of constraint lines along the ribbon‘s axis over the change 

in the skew angle between these lines written as 

 

 

 

For the characteristic screw of an orthogonal ribbon, the d variable from Equation (F.1) is 

equivalent to the d variable in Equation (F.2) since the shortest distance line between this screw 

and its constraint lines is synonymous with the axis of the ribbon.  Although the skew angles θ 

are defined slightly differently within each of these two equations, the rate that they change 

along the ribbon‘s axis will be the same.  One can, therefore, relate the characteristic screw‘s 

pitch with the constant K by reorganizing Equation (F.1) as 
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and taking its derivative with respect to θ in order to find the ribbon‘s pitch using Equation 

(F.2).  One finds that 

 

  

 

Using Equation (F.1) and the trigonometric identity shown in Figure E.1, one finds that 

 

 

 

 

When Equation (F.5) is substituted into Equation (F.4), an expression for the pitch of a ribbon 

with respect to position along the ribbon‘s axis is found and given as 

 

 

 

Note that this function is parabolic.  This is consistent with the plots shown in Figure E.3 from 

Appendix E.  If the derivative of this equation is taken with respect to d, one finds 
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Figure F.8: Trigonometric identity created using Equation (F.1) 
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This function is linear and is consistent the plots shown in Figure E.4 from Appendix E.  If the 

derivative of this equation is taken with respect to d, the constant K with respect to the 

characteristic screw‘s pitch, p, is found and given as 

 

 

 

Equation (7.2) is obtained by rearranging Equation (F.8). 

 

Recall from Appendix E that the constant, K, that was found using the three skew constraint 

lines from the example was given as 0.4 for the right-handed orthogonal ribbon constraint set.  

Equation (7.2) suggests that this ribbon may be characterized by a screw that intersects and is 

orthogonal to its center line and its axis with a pitch of -5.  Equation (F.1) can be used to 

confirm that a screw with a pitch of -5 does complement the three original skew constraint lines 

inputted by the user as ―ComplementRight2Left(5,(pi/4),10,((pi/2)-atan(.5)),30)‖. 
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APPENDIX G:  

“Hyperbolic Paraboloids Composed of 

Orthogonal Ribbon Sets Expressed in Terms 

of Characteristic Screw’s Pitch” 

 

This appendix mathematically proves Equation (7.3), which describes the surface of a 

hyperbolic paraboloid composed of orthogonal ribbon freedom and constraint sets in terms of 

their characteristic screw‘s pitch. 

 

First, the objective is to describe the constraint lines within a ribbon in terms of their location and 

orientation vectors, r


 and f


 respectively.  Figure G.1 helps clarify the geometry of the 

constraint lines within the orthogonal ribbon with respect to the characteristic screw.  Using this 

figure, it is determined that a possible location vector, r


, for every constraint line in the 

orthogonal ribbon may mathematically be expressed as 

 

 

 

where d is the vector‘s magnitude.  This vector always points along the constraint ribbon‘s axis.  

Using the same figure and applying Equation (3.13), it can also be determined that the 

orientation vector, f


, for every constraint line in the orthogonal ribbon in terms of its 

characteristic screw‘s pitch, p, is given as 
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Since every constraint line must lie entirely on the surface of the hyperbolic paraboloid, note that 

the point 

 

 

 

will also lie on the hyperbolic paraboloid where t is any real scalar value.  If Equation (G.1) and 

Equation (G.2) are substituted into Equation (G.3), one finds that 
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Figure G.1: Defining the location and orientation vectors, r


 and f


, for every constraint line (blue) 

within an orthogonal ribbon with its characteristic screw (green) 
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If these values are substituted into the equation of a hyperbolic paraboloid given in Chapter 6 as 

Equation (6.1), and the a and b values for any two different pairs of d and t values are solved 

for, one finds that 

 

 

 

Substituting Equation (G.5) into Equation (6.1) proves that Equation (7.3) is in deed a true 

description of a hyperbolic paraboloid that contains complementary orthogonal ribbon sets in 

terms of their characteristic screw‘s pitch. 
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APPENDIX H:  

“Hyperbolic Paraboloids Composed of Non-

orthogonal Ribbon Sets Expressed in Terms 

of Characteristic Screw’s Pitch” 

 

This appendix mathematically proves Equation (7.4), which relates the characteristic screw‘s 

pitch of a hyperbolic paraboloid composed of non-orthogonal ribbon freedom and constraint sets 

to the a and b values used in the equation for the hyperbolic paraboloid given as Equation (6.1) 

from Chapter 6.  Equation (7.5) is also verified as being the normal vector of the pure 

rotational hoop within the freedom space of Case 3, Type 7. 

 

First, the objective is to describe the constraint lines within the non-orthogonal constraint ribbon 

in terms of their location and orientation vectors, r


 and f


 respectively.  Figure H.1 depicts a 

view of the non-orthogonal constraint ribbon looking down its characteristic screw along the z-

axis.  This view helps clarify the geometric relationship of the constraint lines within the ribbon.  

Using this figure one can determine that a possible location vector, r


, for every constraint line in 

the non-orthogonal ribbon may mathematically be expressed as 

 

 

 

where d is the vector‘s magnitude and a and b are the values used in the equation of a hyperbolic 

paraboloid given in Chapter 6 as Equation (6.1).  The components of this vector were 

determined by noting the slopes of the asymptotic lines or axes of the complementary ribbons 

given in Equation (6.2).  This vector always points along the constraint ribbon‘s axis. 
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Note also that if a=b, the constraint ribbon is orthogonal and one would expect to find the same 

location vector as the location vector found in Appendix G.  For this condition, note that 

Equation (G.1) does indeed equal Equation (H.1).  This observation validates the choice of 

location vector. 

 

Finding the complete orientation vector, f


, is not clear from Figure H.1 alone, however.  From 

the figure, the x- and y-components of the vector may be determined, but its z-component, zC , 

may not be.  For now, this vector will be expressed as 
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Figure H.1: Defining the location and orientation vectors, r


 and f


, for every constraint line (blue) 

within a non-orthogonal ribbon from a view looking down the characteristic screw (green) of the 

hyperbolic paraboloid (along the z-axis). 
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To solve for this unknown z-component, zC , within the constraint line‘s orientation vector, one 

must consider the characteristic screw of the constraint ribbon set that lies along the z-axis.  This 

characteristic screw has a pitch value of p and has a location and orientation vector, c


 and w


, of 

 

 

 

 

If the constraint line‘s vectors from Equation (H.1), Equation (H.2), and the characteristic 

screw‘s vectors from Equation (H.3) are substituted into the pitch equation given in Appendix 

B as Equation (B.4), the characteristic screw‘s pitch, p, is found to be 

 

 

 

Using Equation (H.4), the z-component, zC , is solved for.  The constraint line‘s complete 

orientation vector, f


, is therefore 

 

 

 

 

Note also that if a=b, the constraint ribbon would be orthogonal and one would expect to find the 

same orientation vector as the orientation vector found in Appendix G.  For this condition, the 

vector given in Equation (G.2) does point in the same direction as the vector given in Equation 

(H.5).  This finding validates the selection of the orientation vector for non-orthogonal constraint 

ribbons. 

 

Since every constraint line must lie entirely on the surface of the hyperbolic paraboloid, one can 

know that the point 
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will also lie on the hyperbolic paraboloid where t is any real scalar value.  If Equations (H.1) 

and Equations (H.5) are substituted into Equation (H.6), one finds that 

 

 

 

 

 

 

 

 

If these values are substituted into the equation for a hyperbolic paraboloid given in Chapter 6 

as Equation (6.1) and p is solved for in terms of the a and b values, Equation (7.4) is proven. 

 

The normal vector, n


, of the pure rotational hoop may be found by taking the cross product of 

the orientation vector, f


, of the constraint lines given in Equation (H.5) and the orientation 

vector, w


, of the characteristic screw given in Equation (H.3).  The resulting vector of this cross 

product is given in Equation (7.5) from Chapter 7. 
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APPENDIX I:  

“Finding the Screws of Case 3, Type 7 for 

Orthogonal Ribbon Sets” 

This appendix proves that every twist within the freedom space of Case 3, Type 7 will exist 

within disks that lie on planes that are perpendicular to the axis of the freedom ribbon set (i.e. the 

central line of the constraint ribbon set) for the case of complementary orthogonal ribbon sets.  

The center points of these disks are intersected by the freedom ribbon set‘s axis. 

 

To begin the proof, consider three non-redundant skew constraint lines that produce orthogonal 

complementary ribbon sets.  These three constraint lines are shown in Figure I.1.  A 

characteristic screw is arbitrarily defined along the y-axis and is given a pitch of -1.  The first 

constraint line is the central line within the constraint ribbon set and lies along the x-axis.  The 

other two skew constraint lines intersect and are perpendicular to the z-axis and are positioned in 

such a way as to complement the ribbon‘s characteristic screw.  From Chapter 7 it is known that 

these three skew constraint lines will produce a right-handed orthogonal constraint ribbon set 

with a complementary left-handed orthogonal freedom set whose axis is the central constraint 

line along the x-axis. 
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One can verify the existence of this pure rotational freedom ribbon set and locate the screws of 

the system by using the mathematical approach described in Chapter 3 of Section 3.4.2.  This is 

done by first expressing the three non-redundant constraint lines as wrenches.  From Figure I.1 

these three wrenches can be found and defined to be 
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Figure I.1: Three skew constraint lines (blue) that produce a system of complementary orthogonal 

constraint and freedom ribbon sets with a characteristic screw‘s pitch of -1 (thick green).  A disk of twists 

is shown that contains a pure rotational freedom line (red), a pure translational line (thick black), and an 

infinite number of screw lines (green). 
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A 3x6 wrench matrix may then be constructed using the three wrenches from Equation (I.1).  

The null space of this matrix may then be calculated to find the complementary twists of the 

system.  When this null space has been found and the w


 and v


 vectors have properly been 

switched within the resulting vectors to maintain the twist convention given in Equation (3.1), 

the resultant twist vector of the system may be expressed as a linear combination of three 

independent twist vectors as 

 

 

 

 

 

 

 

where A, B, and C may be any real numbers.  The 16  twist vector at the far right of Equation 

(I.2) is the complete mathematical representation of every possible twist for the system of three 

skew constraints.  This resultant twist‘s rotational and translational velocity vectors, w


 and v


, 

are the following: 

 

 

 

Using these vectors and the definition of pitch given in Equation (3.4), one finds that every twist 

in the system must have a pitch, p, that equals 
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It can also be concluded that every twist in the system must lie on planes that are parallel to or 

coincident with the y-z plane since the x-component of the twist‘s orientation vector, w


, is 

always zero.  These planes are the parallel planes that the skew pure rotational freedom lines 

from the freedom ribbon set are expected to lie on. 

 

If every allowable twist within the freedom space of this system also only exists within disks on 

these planes with center points that pass through the axis of the orthogonal freedom ribbon set 

(x-axis), one would expect the location vector 

 

  

to be a possible location vector for every allowable twist within the system where d is any real 

number that corresponds to any location along the x-axis. 

 

To check the validity of this claim, the twist‘s location vector, c


, given in Equation (I.5), the 

twist‘s rotational and linear velocity vectors given in Equation (I.3), and the twist‘s pitch given 

in Equation (I.4) are substituted into Equation (3.5) from Chapter 3.  Three equations result 

after performing this substitution.  They are 

 

 

 

 

 

 

 

If the location vector, c


, given in Equation (I.5) is true for every twist within the freedom space 

of this system, all three equations from Equation (I.6) should always be true for any real values 

of A, B, C, and d.  Clearly zero will always equal zero, but the last two equations from Equation 

(I.6) will each both independently simplify to 
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These last two equations could be subtracted from each other to again show that zero equals zero 

which will always be true.  This proves that every twist line must pass through the x-axis or the 

axis of the orthogonal freedom ribbon set at least once. 

 

Since it has been proven that every twist line must intersect the axis of the orthogonal freedom 

ribbon set and must lie on planes parallel to the parallel planes of the pure rotational freedom 

lines, it has been proven that every twist line lies within a disk like the one shown in Figure I.1. 

 

Every such disk along the orthogonal freedom ribbon set‘s axis will contain a single pure 

rotational freedom line that corresponds to a line within the freedom ribbon set.  These pure 

rotational freedom lines correspond to the twists that have zero pitch values and satisfy the 

condition 

 

 

This equation is derived by setting Equation (I.4) equal to zero.   

 

Note also from the definition of the resultant twist given in Equation (I.2) that a pure translation 

will only exist within the freedom space of this system when A and B equal zero such that w


 

becomes a zero vector.  When this condition is satisfied, only one pure translation that points 

along the z-axis exists, which is the axis of the orthogonal constraint ribbon set. 

 

Every disk of twists within the freedom space of complementary orthogonal ribbon sets will, 

therefore, contain a single pure rotational freedom line, a single pure translational line, and an 

infinite number of screws with pitch values that vary according to location within the disk.  This 

conclusion is depicted in Figure I.1. 

 

 

 

 

 

CBA 2 . (I.8) 



 367 

APPENDIX J:  

“Equation for a Circular Hyperboloid” 

This appendix proves Equation (7.6) as the equation for a circular hyperboloid in terms of the 

parameters L and α defined in Figure 7.82 from Chapter 7. 

 

To prove Equation (7.6), the variable c in Equation (6.3) from Chapter 6 must be solved for in 

terms of these desired parameters.  To achieve this task, a point on the surface of a general 

circular hyperboloid must be located.  This point is essentially any point along any constraint line 

that lies on the circular hyperboloid‘s surface.  If one arbitrarily chooses the constraint line on 

the hyperboloid that also intersects the x-axis as shown in Figure J.1, one can define its location 

vector, r


, as 

 

 

where L is the radius of the hyperboloid‘s central circular cross-section.  Using the relationships 

shown in Figure J.1, the orientation vector, f


, can also be determined for this constraint line in 

terms of α as 

 

 

 

 00Lr 


, (J.1) 

  sincos0f


. (J.2) 
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Since every point along this constraint line must lie entirely on the surface of the hyperboloid, 

one can know that the point 

 

 

 

will also lie on the hyperboloid where t is any real scalar value.  If Equation (J.1) and Equation 

(J.2) are substituted into Equation (J.3), one finds that 
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Figure J.1: Defining the location and orientation vectors, r


 and f


, for a constraint line (blue) within a 

circular hyperboloid 

  tfrzyx  


 , (J.3) 

Lx   

costy   

sintz  . 

(J.4) 
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If these values are substituted into the equation for a circular hyperboloid given in Chapter 6 as 

Equation (6.3) and the c parameter is solved for, one finds that 

 

 

Substituting this value into Equation (6.3) proves that Equation (7.6) is the true description of a 

circular hyperboloid in terms of L and α. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tanLc  . (J.5) 
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APPENDIX K:  

“Equation for an Elliptical Hyperboloid” 

This appendix proves Equation (7.7) and Equation (7.8) to be two possible equations that 

describe an elliptical hyperboloid in terms of the parameters a, b, 1  and 2  defined in Figure 

7.84 from Chapter 7. 

 

To prove these equations, the variable c in Equation (6.4) from Chapter 6 must be solved for in 

terms of the desired parameters.  To achieve this task, a point on the surface of a general 

elliptical hyperboloid must be located.  This point is essentially any point along any constraint 

line that lies on the elliptical hyperboloid‘s surface.  If the constraint line on the hyperboloid is 

chosen that also intersects the x-axis as shown in Figure K.1, its location vector, 1r


, can be 

defined as 

 

 

where a is the length of the hyperboloid‘s central elliptical cross-section‘s major axis.  Using the 

relationships shown in Figure K.1, the orientation vector, 1f


, can also be determined for this 

constraint line in terms of 1  as 

 

 

 

 001 ar 


, (K.1) 

 111 sincos0 f


. (K.2) 
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Since every point along this constraint line must lie entirely on the surface of the hyperboloid, 

one can know that the point 

 

 

 

will lie on the hyperboloid where t is any real scalar value.  If Equation (K.1) and Equation 

(K.2) are substituted into Equation (K.3), one finds that 
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Figure K.1: Defining the location and orientation vectors, r


 and f


, for two constraint lines (blue) 

within an elliptical hyperboloid 

  tfrzyx 11111


 , (K.3) 
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If these values are substituted into the equation for an elliptical hyperboloid given in Chapter 6 

as Equation (6.4) and the c parameter is solved for, one finds that 

 

 

Substituting this value into Equation (6.4), Equation (7.7) is proven to be a true description of 

an elliptical hyperboloid in terms of a, b, and 1 . 

 

Now Equation (7.8) is also proven to be true by choosing another point on the surface of the 

elliptical hyperboloid.  If one chooses the constraint line on the hyperboloid that intersects the y-

axis as shown in Figure K.1, its location vector, 2r


, is defined as 

 

 

where b is the length of the hyperboloid‘s central elliptical cross-section‘s minor axis.  Using the 

relationships shown in Figure K.1, one can also determine the orientation vector, 2f


, for this 

constraint line in terms of 2  as 

 

 

 

Since every point along this constraint line must also lie entirely on the surface of the 

hyperboloid, the point 

 

 

 

will lie on the hyperboloid where t is any real scalar value.  If Equation (K.6) and Equation 

(K.7) are substituted into Equation (K.8), one finds that 

ax 1  

11 costy   

11 sintz  . 

(K.4) 

1tanbc  . (K.5) 

 002 br 


, (K.6) 

 222 sin0cos f


. (K.7) 

  tfrzyx 22222


 , (K.8) 
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If these values are substituted into the equation for an elliptical hyperboloid given in Chapter 6 

as Equation (6.4) and the c parameter is solved for, one finds that 

 

 

Substituting this value into Equation (6.4) proves that Equation (7.8) is another true description 

of an elliptical hyperboloid in terms of a, b, and 2 . 
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by 2  

22 sintz  . 

(K.9) 

2tanac  . (K.10) 
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APPENDIX L:  

“Two Orthogonal Intersecting Twists 

Generate a Cylindroid” 

 

This appendix proves that the linear combination of any two orthogonal, intersecting twists will 

result in an infinite number of twists that all lie on the surface of a cylindroid where the two 

original orthogonal twists are the cylindroid‘s principal generators. 

 

In order to prove that this statement is true, first assume that it is.  If it is true, the location vector, 

c


, of every point along every twist line on the surface of the cylindroid will satisfy the equation 

of a cylindroid given in Equation (6.5) as 

 

 

 

 

 

where r, h, and   are defined in Figure L.1. 

cosrcx   

sinrcy   

 sincoshcz  . 

(L.1) 
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Note also from Figure L.1 that 

 

 

 

 

 

 

If Equation (L.2) is plugged into Equation (L.1), another expression for the location vector of 

every possible twist on the surface of the cylindroid is found to be  
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Figure L.1: Parameters defined for two orthogonal, intersecting twists.  Every linear combination of 

these two twists results in another twist that lies on the surface of a cylindroid with principal generators 

that are the lines coincident with the two original twists. 
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Recall from Chapter 6 that a cylindroid‘s extreme generators are offset 45 degrees from its 

principal generators.  The lower extreme generator of the cylindroid shown in Figure L.1 is, 

therefore, expressed using the resultant twist given in Equation (8.14) by making its orientation 

vectors‘ components point 45 degrees away from either x or y axis by setting A and B equal to 

the same real number value.  The lower extreme generator‘s w


 and v


 vectors are, therefore, 

expressed as 

 

 

 

 

Recall also from Chapter 6 and note from Figure L.1 that a cylindroid‘s extreme generators are 

half the height, h, above and below the plane of the principal generators.  The location vector, c


, 

for the lower extreme generator is, therefore, given as 

 

 

 

If the pitch of the extreme generator is called egp  and this value, Equation (L.4) and Equation 

(L.5) are plugged into Equation (3.5), the resulting system of three equations may be solved to 

find the cylindroid‘s height, h, as 

 

 

This equation proves that the height of any cylindroid of twists is equal to the difference between 

the pitch values of its principal generators.  If one plugs Equation (L.6) into Equation (L.3) and 

22 BA

rA
cx


  

22 BA

rB
c y


  

22 BA

hAB
cz


 . 

(L.3) 

 0AAweg 


 

 021 ApApveg 


. 

(L.4) 










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h
AAceg


. (L.5) 

21 pph  . (L.6) 
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notes that the y-component of the location vector, yc , in Equation (L.3) is equal to the x-

component of the location vector, xc , multiplied by B/A from the same equation, one must 

conclude that the location vector from Equation (L.3), which was derived from Equation (L.1), 

is equivalent to Equation (8.17). 

 

By finding these equations to be equal, the statement that was desired to be proven in this 

appendix has been proven.  Since the general location vector derived from the linear combination 

of two orthogonal intersecting twists found in Chapter 8 is equivalent to the general location 

vector for twists that lie on the surface of a cylindroid, it is known that every two orthogonal 

intersecting twists will produce a freedom space in the shape of a cylindroid where the two 

original twists are the cylindroid‘s principal generators.  Note, however, from Equation (L.6) 

that if the pitch values of these twists are equal, the height of the cylindroid will be zero and the 

cylindroid will be a disk of twist lines. 

 

In conclusion, note that the pitch value of the extreme generators may also be determined using 

the equations developed in this appendix.  The pitch of the lower extreme generator, egp , is 

solved for by plugging Equation (L.4) and Equation (L.5) into Equation (3.5) and then 

plugging Equation (L.6) into one of the resulting equations.  This pitch value is found to be 

 

 

 

It may also be shown that the upper extreme generator has the same pitch value as the lower 

extreme generator.  Note, therefore, that the upper and lower extreme generators‘ pitch values 

equal the average of the two principal generators‘ pitch values. 
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APPENDIX M:  

“MATLAB Code for Drawing Case 4 

Freedom Spaces” 

 

This appendix explains and provides the MATLAB code for drawing any freedom space within 

Case 4 generated from any two independent twists.  It provides some example plots created using 

this code. 

 

The complete code consists of only four functions.  These functions are provided at the end of 

this appendix.  The main function is called ―PlotLinComTwists‖.  In this function the user inputs 

two independent twist vectors, a number that determines how many twist lines will be drawn 

within the freedom space, and a number that determines how long each twist line should be 

drawn.  The program then linearly combines the two independent twists given according to the 

user‘s input specifications and plots the resulting twist lines.  If the twist lines are determined to 

be pure rotations, they are plotted in red.  If the twist lines are determined to be screws, they are 

plotted in green.  If they are determined to be pure translations, they are plotted in black and 

located at the origin of the system.  If enough twist lines are plotted, the spaces they occupy 

begin to resemble the freedom spaces found and described in Section 8.1 of Chapter 8.  In this 

way, the author was able to strategically enter twists into the program to discover, understand 

and visually verify every freedom space mathematically proven in Section 8.1. 

 

Two examples of the utility of this program are shown below.  Suppose, first, the user input these 

commands: 

 

T1 = [1 0 0 0 0 0]; 

T2 = [0 1 0 0 10 0]; 

PlotLinComTwists(T1,T2,10,5); 
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The program then plots the freedom space shown in Figure M.1.  This freedom space is a 

cylindroid of screws with a single pure rotational freedom line as one of its principal generators.  

The resulting freedom space is the same freedom space that was described and shown in Figure 

8.10 from Chapter 8. 

 

Suppose now that the user input these commands: 

 

T1 = [1 0 0 0 0 0]; 

T2 = [1 0 0 5 0 5]; 

PlotLinComTwists(T1,T2,10,5); 

 

The program then plots the freedom space shown in Figure M.2.  This freedom space is a plane 

of parallel screws with a single pure rotational freedom line as well as a pure translation that 

intersects the plane with a projected angle that is not 90 degrees.  The resulting freedom space is 

the same freedom space that was described and shown in Figure 8.5 from Chapter 8. 

 

Figure M.1: Cylindroid freedom space generated using the MATLAB code of this appendix 
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The four functions are provided below: 

 

Funtion (1): 

function PlotLinComTwists(T1,T2,num,range) 

%Takes two twists and plots multiple ((2*num+1)^2) linear combinations of them to 

%generate the complete freedom space.  Lines plotted have a length of 2*range 

for k = -num:1:num; 

    for h = -num:1:num; 

        T = T1*k + T2*h; 

        MainPlotTwist(T,range); 

    end 

end 

 

Function (2): 

function MainPlotTwist(T,range) 

%Plots a twist T with a length of 2*range 

[c w p] = TwistDecomp(T); 

PlotTwist(c,w,p,range); 

 

 

Figure M.2: Planar freedom space generated using the MATLAB code of this appendix 
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Function (3): 

function [c w p] = TwistDecomp(T) 

%Decomposes twist vectors into their pitch, location, and orientation 

%vectors 

%Input: Twist (6x1 matrix) 

%Output: c=location vector w=orientation vector p=pitch 

if( T(1)==0 && T(2)==0 && T(3)==0 ) 

    %pure translation 

    c = [0 0 0]; 

    w = [T(4) T(5) T(6)];  %Orientation vector defined 

    p = 'Inf'; 

else 

    w = [T(1) T(2) T(3)]; 

    v = [T(4) T(5) T(6)]; 

    p = dot(w,v)/dot(w,w); 

    c = [0 0 0];  %Initialize location vector 

    if(w(1)==0 && w(2)==0) 

        c(1) = -v(2)/w(3); 

        c(2) = v(1)/w(3); 

        c(3)= 0; 

    elseif(w(1)==0 && w(3)==0) 

        c(1) = v(3)/w(2); 

        c(2) = 0; 

        c(3) = -v(1)/w(2); 

    elseif(w(2)==0 && w(3)==0) 

        c(1) = 0; 

        c(2) = -v(3)/w(1); 

        c(3) = v(2)/w(1); 

    elseif(w(1)==0) 

        c(1) = (v(2)-p*w(2))/(-w(3)); 

        c(2) = v(1)/w(3); 

        c(3)= 0; 

    elseif(w(2)==0) 

        c(1) = -v(2)/w(3); 

        c(2) = (v(1)-p*w(1))/w(3); 

        c(3)= 0; 

    elseif(w(3)==0) 

        c(1) = 0; 

        c(2) = -v(3)/w(1); 

        c(3) = (v(2)-p*w(2))/w(1); 

    else 

        c(1) = 0; 

        c(2) = (v(3)-p*w(3))/(-w(1)); 

        c(3) = (v(2)-p*w(2))/w(1); 

    end 

end 
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Function (4) 

function PlotTwist(c,w,p,range) 

%Function plots a twist 

%If twist is a pure rotation it is red 

%If twist is a pure translation it is black 

%If twist is a screw it is green 

w = w/sqrt(dot(w,w)); %Make orientation vector a unit vector 

plot3(c(1),c(2),c(3)) 

for t = -range:0.05:range; 

    hold on; 

    line = c + w*t; 

    if(p == 0) 

        plot3(line(1),line(2),line(3),'r'); 

    elseif(p == 'Inf') 

        plot3(line(1),line(2),line(3),'k'); 

    else 

        plot3(line(1),line(2),line(3),'g'); 

    end 

end 
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APPENDIX N:  

“Nested Elliptical Hyperboloids as the 

Constraint Space of Case 4, Type 9” 

 

This appendix proves that the constraint space of Case 4, Type 9 is an infinite number of nested 

elliptical hyperboloids shown in Figure 8.87 from Chapter 8. 

 

In Section 8.3.9 it was shown that two orthogonal ribbons that are either both right-handed or 

both left-handed exist within the constraint space of Case 4, Type 9.  These ribbons‘ axes 

intersect at the origin and lie along the x- and y-axes.  The two principal generators of the 

freedom space‘s cylindroid of pure screws also lie along the x- and y-axes.  It was established 

that if all the constraint lines could be found that complement these two principal generators, all 

the constraint lines will have been found that complement the entire freedom space and the 

complete constraint space of the system will, therefore, have been found.  The two screw 

principal generators (green) and a single constraint line (blue) from each of the two orthogonal 

ribbons is shown in Figure N.1.  The lengths, a and b, and the angles, 1  and 2 , are labeled in 

the figure. 
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Note that the way Figure N.1 is drawn, the principal generators‘ pitches are both positive since 

the constraint lines drawn belong to left-handed orthogonal ribbons. 

 

From the parameters shown in Figure N.1, one can describe the two orthogonal ribbons found in 

Chapter 8 using Equation (3.13) as 

 

 

 

 

If the complete constraint space of the system is an infinite number of nested elliptical 

hyperboloids and the constraint lines within the two orthogonal ribbons described by Equation 

(N.1) are part of this space, one should expect the linear combination of certain constraint lines 

from within these two orthogonal ribbons to produce constraint lines that lie on the surface of 

elliptical hyperboloids.  More specifically, one would expect two constraint lines from each 

ribbon to lie on the surface of a single hyperboloid within the constraint space.  The reason for 
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Figure N.1: Screw principal generators (green) and a single constraint line (blue) from each of the two 

orthogonal ribbons found within the constraint space of Case 4, Type 9 with key parameters labeled. 

21 tanbp   

12 tanap  . 

(N.1) 
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this is that the elliptical hyperboloids within the constraint space are centered about the z-axis 

and, therefore, two and only two constraint lines the same distance away from the z-axis from 

each of the orthogonal ribbons will lay on the surface of a single elliptical hyperboloid.  These 

four constraints are shown in Figure N.2. 

 

Using the parameters defined in Figure N.2, the location and orientation vectors, r


and 

f


respectively,  can be defined for all four constraint lines as 
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Figure N.2: Four constraint lines (two from each orthogonal ribbon) that all lie on the surface of a single 

elliptical hyperboloid within the constraint space of Case 4, Type 9. 
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If Equation (N.2) is used to produce a wrench matrix containing four rows of wrenches and 

Gaussian Elimination is then used to simplify this matrix, one finds 

 

 

 

 

 

 

From Chapter 7 it was established that every hyperboloid always only consists of three 

independent constraint lines.  In order to find the correct relationship between a, b, 1 , and 2  

such that the four constraint lines from the two orthogonal ribbons will lie on the surface of the 

same hyperboloid, therefore, one must make sure the final pivot in the matrix from Equation 

(N.3) is zero such that one of the four constraints will always be redundant.  If the last pivot, 

therefore, is set equal to zero and the resulting equation is rearranged, one finds 

 

 

This result was found in Appendix K from Equation (K.5) and Equation (K.10) when an 

equation was being searched for that would describe the surface of an elliptical hyperboloid.  In 
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other words, as long as the parameters a, b, 1 , and 2  for the four constraint lines from the two 

orthogonal ribbons found in Section 8.3.9 satisfy Equation (N.4), the linear combination of 

these four constraint lines will result in constraint lines that lie on the surface of an elliptical 

hyperboloid. 

 

Note that if a equals b, tan 1  must equal tan 2  according to Equation (N.4) and that the 

principal generators of the freedom space must have equivalent pitch values according to 

Equation (N.1).  If this is the case, the system will become Case 4, Type 8. 
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